-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbeam_search.py
225 lines (196 loc) · 7.09 KB
/
beam_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
Beam search for evaluation
"""
from transition_systems import AttachJuxtapose
import hydra
from omegaconf.dictconfig import DictConfig
from models.parser import Parser
import torch
from time import time
from omegaconf import DictConfig
from evaluation_metric import FScore, evalb
from env import State
from progressbar import ProgressBar
from tree import InternalParseNode, Tree
from utils import get_device
from typing import List
import logging
log = logging.getLogger(__name__)
class Beam:
batch_size: int
beam_size: int
tokens_word: List[List[str]]
tags: List[List[str]]
state: State
log_probs: torch.Tensor # batch_size x beam_size
n_step: int
finished: torch.Tensor # batch_size
pred_trees: List[List[Tree]]
model: Parser
def __init__(
self,
tokens_word: List[List[str]],
tags: List[List[str]],
tokens_emb: torch.Tensor,
model: Parser,
cfg: DictConfig,
) -> None:
self.batch_size = len(tokens_word)
self.beam_size = cfg.beam_size
self.tokens_word = tokens_word
self.tokens_emb = tokens_emb
self.tags = tags
self.model = model
device = tokens_emb.device
init_state = State(
[None for _ in range(self.batch_size)],
tokens_word,
tokens_emb,
next_token_pos=torch.zeros(
self.batch_size, dtype=torch.int64, device=device
),
n_step=0,
batch_idx=list(range(self.batch_size)),
)
actions, log_probs = self.model(init_state, topk=self.beam_size)
self.log_probs = log_probs
partial_trees = []
tokens_word_expanded = []
tokens_emb_expanded = []
batch_idx = []
self.finished = torch.zeros(self.batch_size, dtype=torch.bool, device=device)
self.pred_trees = [
[None for _ in range(self.beam_size)] for _ in range(self.batch_size)
]
for i in range(self.batch_size):
for j in range(self.beam_size):
tag = self.tags[i][0]
word = self.tokens_word[i][0]
tree = AttachJuxtapose.execute(
None, actions[i][j], 0, tag, word, immutable=False
)
assert isinstance(tree, InternalParseNode)
if len(self.tokens_word[i]) > 1:
partial_trees.append(tree)
tokens_word_expanded.append(tokens_word[i])
tokens_emb_expanded.append(tokens_emb[i])
batch_idx.append(i)
else:
self.finished[i] = True
self.pred_trees[i][j] = tree
tokens_emb_expanded_t = torch.stack(tokens_emb_expanded)
self.state = State(
partial_trees, # type: ignore
tokens_word_expanded,
tokens_emb_expanded_t,
next_token_pos=torch.ones(
len(partial_trees), dtype=torch.int64, device=device
),
n_step=1,
batch_idx=batch_idx,
)
self.n_step = 1
def done(self) -> bool:
return self.finished.all().item() # type: ignore
def grow(self) -> bool:
actions, log_probs = self.model(self.state, topk=self.beam_size)
x = log_probs.view(
-1, self.beam_size, self.beam_size
) # batch_size x beam_size x beam_size
x = self.log_probs[~self.finished].unsqueeze(-1) + x
y = x.view(
-1, self.beam_size * self.beam_size
) # batch_size x (beam_size * beam_size)
values, indices = y.topk(self.beam_size, dim=-1)
self.log_probs[~self.finished] = values
partial_trees = []
tokens_word = []
tokens_emb = []
batch_idx = []
cnt = 0
for i in range(self.batch_size):
if self.finished[i]:
continue
for j in range(self.beam_size):
idx = indices[cnt, j].item()
m = cnt * self.beam_size + idx // self.beam_size
n = idx % self.beam_size
current_tree = self.state.partial_trees[m]
action = actions[m][n]
tag = self.tags[i][self.n_step]
word = self.tokens_word[i][self.n_step]
tree = AttachJuxtapose.execute(
current_tree,
action,
self.n_step,
tag,
word,
immutable=True,
)
assert isinstance(tree, InternalParseNode)
if self.n_step >= len(self.tokens_word[i]) - 1:
self.finished[i] = True
self.pred_trees[i][j] = tree
else:
partial_trees.append(tree)
tokens_word.append(self.tokens_word[i])
tokens_emb.append(self.tokens_emb[i])
batch_idx.append(self.state.batch_idx[m])
cnt += 1
if tokens_emb == []:
assert self.done()
return True
tokens_emb_t = torch.stack(tokens_emb)
self.n_step += 1
self.state = State(
partial_trees, # type: ignore
tokens_word,
tokens_emb_t,
self.state.next_token_pos.new_full(
(len(partial_trees),), fill_value=self.n_step
),
n_step=self.n_step,
batch_idx=batch_idx,
)
return False
def best_trees(self) -> List[InternalParseNode]:
return [
self.pred_trees[i][j]
for i, j in enumerate(self.log_probs.argmax(dim=-1).tolist())
]
def beam_search(
loader: torch.utils.data.DataLoader, model: Parser, cfg: DictConfig # type: ignore
) -> FScore:
"Run validation/testing with beam search"
model.eval()
device, _ = get_device()
gt_trees = []
pred_trees = []
bar = ProgressBar(max_value=len(loader))
time_start = time()
with torch.no_grad():
for i, data_batch in enumerate(loader):
# calculate token embeddings
tokens_emb = model.encoder(
data_batch["tokens_idx"].to(device=device, non_blocking=True),
data_batch["tags_idx"].to(device=device, non_blocking=True),
data_batch["valid_tokens_mask"].to(device=device, non_blocking=True),
data_batch["word_end_mask"].to(device=device, non_blocking=True),
)
# initialize the beam
beam = Beam(
data_batch["tokens_word"],
data_batch["tags"],
tokens_emb,
model,
cfg,
)
# keep executing actions and updating the beam until the entire batch is finished
while not beam.grow():
pass
gt_trees.extend(data_batch["trees"])
pred_trees.extend(beam.best_trees())
bar.update(i)
f1_score = evalb(hydra.utils.to_absolute_path("./EVALB"), gt_trees, pred_trees)
log.info("Time elapsed: %f" % (time() - time_start))
return f1_score