-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscan.py
66 lines (52 loc) · 1.97 KB
/
scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from transform import four_transform
import cv2
import numpy as np
from skimage.filters import threshold_local
import argparse
import cv2
import imutils
def scanner(image):
# Edge Detection
# load the image and compute the ratio of old height to the new height, clone it and resize it
image = cv2.imread(image)
ratio = image.shape[0] / 500.0
orig = image.copy()
image = imutils.resize(image, height=500)
# convert the image to grayscale, blur it, and find images edges in image
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
grayscale = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 75, 200)
#cv2.imshow("Image", image)
#cv2.imshow("Edged", edged)
#cv2.waitKey(0)
#cv2.destroyAllWindows()
# Finding Contours
# Assume that the longest contour in the image with exactly four points is the piece of the paper
# to be scanned
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# This will filter out all the contours with the largest area
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]
for c in cnts:
#approximating the contour
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
# finding the rectangle if the contour has 4 points
if len(approx) == 4:
screenCnt = approx
break
cv2.drawContours(image, [screenCnt], -1, (0,255,0), 2)
#cv2.imshow("Outline", image)
#cv2.waitKey(0)
#cv2.destroyAllWindows()
#orig: original image
#screenCnt: contour representing the document multiplied by ratio for resizing the original image
warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
#this is for black and white feels
warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
T = threshold_local(warped, 11, offset=10, method="gaussian")
warped = (warped > T).astype("uint8") * 255
#cv2.imshow("Original", imutils.resize(orig, height = 650))
#cv2.imshow("Scanned", imutils.resize(warped, height = 650))
#cv2.waitKey(0)
return warped