-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinference_video.py
executable file
·76 lines (66 loc) · 2.78 KB
/
inference_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 25 23:28:19 2022
@author: a975193
"""
import cv2
import time
import numpy as np
import tensorflow.compat.v1 as tf
input_folder = "dataset/source_videos/"
input_video = "sample_video_18.mp4"
model_path = "saved_model/saved_model"
colors = [(255,0,0), (229, 52, 235), (235, 85, 52),
(14, 115, 51), (14, 115, 204)]
path = input_folder+input_video
cap = cv2.VideoCapture(path)
cv2.namedWindow("display", cv2.WINDOW_NORMAL)
video = cv2.VideoWriter(input_video, cv2.VideoWriter_fourcc(*'MP4V'), 30, (512,512))
def process_keypoint(kp, kp_s, h, w, img):
for i, kp_data in enumerate(kp):
cv2.circle(img,(int(kp_data[1]*w), int(kp_data[0]*h)),5,colors[i],-1)
return img
with tf.Session(graph = tf.Graph()) as sess:
tf.saved_model.loader.load(sess, ['serve'], model_path)
graph = tf.get_default_graph()
input_tensor = graph.get_tensor_by_name("serving_default_input_tensor:0")
det_score = graph.get_tensor_by_name("StatefulPartitionedCall:6")
det_class = graph.get_tensor_by_name("StatefulPartitionedCall:2")
det_boxes = graph.get_tensor_by_name("StatefulPartitionedCall:0")
det_numbs = graph.get_tensor_by_name("StatefulPartitionedCall:7")
det_keypoint = graph.get_tensor_by_name("StatefulPartitionedCall:4")
det_keypoint_score = graph.get_tensor_by_name("StatefulPartitionedCall:3")
print("Model Loaded")
while True:
ret, frame = cap.read()
if ret:
frame = cv2.resize(frame,(512,512),interpolation = cv2.INTER_AREA)
height, width, _ = frame.shape
image_exp_dims = np.expand_dims(frame, axis=0)
start_time = time.time()
score,classes,boxes,nums_det, \
keypoint,keypoint_score = sess.run([det_score, det_class, det_boxes,
det_numbs,det_keypoint,det_keypoint_score],
feed_dict={input_tensor:image_exp_dims})
for i in range(int(nums_det[0])):
if(score[0][i]*100 > 50):
per_box = boxes[0][i]
y1 = int(per_box[0]*height)
x1 = int(per_box[1]*width)
y2 = int(per_box[2]*height)
x2 = int(per_box[3]*width)
p1 = (x1,y1)
p2 = (x2,y2)
cv2.rectangle(frame, p1, p2, (0,255,0), 3)
frame = process_keypoint(keypoint[0][0], keypoint_score[0], height, width, frame)
cv2.imshow("display",frame)
video.write(frame)
print("Time: ", time.time() - start_time)
cv2.waitKey(1)
else:
print("break")
break
cap.release()
video.release()
cv2.destroyAllWindows()