-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmake_tfrecords.py
executable file
·162 lines (144 loc) · 5.6 KB
/
make_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from __future__ import print_function
import tensorflow as tf
import numpy as np
from collections import namedtuple, OrderedDict
from subprocess import call
import scipy.io.wavfile as wavfile
#import argparsetoml
import codecs
import timeit
import struct
#import toml
import re
import sys
import os
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def slice_signal(signal, window_size, stride=0.5):
""" Return windows of the given signal by sweeping in stride fractions
of window
"""
assert signal.ndim == 1, signal.ndim
n_samples = signal.shape[0]
offset = int(window_size * stride)
slices = []
for beg_i, end_i in zip(
range(0, n_samples, offset),
range(window_size, n_samples + offset, offset)):
if end_i - beg_i < window_size:
break
slice_ = signal[beg_i:end_i]
if slice_.shape[0] == window_size:
slices.append(slice_)
return np.array(slices, dtype=np.int32)
def read_and_slice(filename, wav_canvas_size, stride=0.5):
fm, wav_data = wavfile.read(filename)
if fm != 16000:
raise ValueError('Sampling rate is expected to be 16kHz!')
signals = slice_signal(wav_data, wav_canvas_size, stride)
return signals
def encoder_proc(wav_filename, noisy_path, out_file, wav_canvas_size):
""" Read and slice the wav and noisy files and write to TFRecords.
out_file: TFRecordWriter.
"""
ppath, wav_fullname = os.path.split(wav_filename)
noisy_filename = os.path.join(noisy_path, wav_fullname)
wav_signals = read_and_slice(wav_filename, wav_canvas_size)
noisy_signals = read_and_slice(noisy_filename, wav_canvas_size)
assert wav_signals.shape == noisy_signals.shape, noisy_signals.shape
for (wav, noisy) in zip(wav_signals, noisy_signals):
wav_raw = wav.tostring()
noisy_raw = noisy.tostring()
example = tf.train.Example(
features=tf.train.Features(
feature={
'wav_raw': _bytes_feature(wav_raw),
'noisy_raw': _bytes_feature(noisy_raw)
}))
out_file.write(example.SerializeToString())
def main(opts):
if not os.path.exists(opts.save_path):
# make save path if it does not exist
os.makedirs(opts.save_path)
# set up the output filepath
out_filepath = os.path.join(opts.save_path, opts.out_file)
if os.path.splitext(out_filepath)[1] != '.tfrecords':
# if wrong extension or no extension appended, put .tfrecords
out_filepath += '.tfrecords'
else:
out_filename, ext = os.path.splitext(out_filepath)
out_filepath = out_filename + ext
# check if out_file exists and if force flag is set
if os.path.exists(out_filepath) and not opts.force_gen:
raise ValueError(
'ERROR: {} already exists. Set force flag (--force-gen) to '
'overwrite. Skipping this speaker.'.format(out_filepath))
elif os.path.exists(out_filepath) and opts.force_gen:
print('Will overwrite previously existing tfrecords')
os.unlink(out_filepath)
beg_enc_t = timeit.default_timer()
out_file = tf.python_io.TFRecordWriter(out_filepath)
# process the acoustic and textual data now
print('-' * 50)
wav_dir = opts.wav_dir # clean wav dir
for wav in os.listdir(wav_dir):
print(wav)
wav_files = [
os.path.join(wav_dir, wav) for wav in os.listdir(wav_dir)
if wav.endswith('.wav')
]
noisy_dir = opts.noisy_dir # noisy wav dir
nfiles = len(wav_files)
for m, wav_file in enumerate(wav_files):
print('Processing wav file {}/{} {}{}'.format(
m + 1, nfiles, wav_file, ' ' * 10), end='\r')
sys.stdout.flush()
encoder_proc(wav_file, noisy_dir, out_file, 2**14)
out_file.close()
end_enc_t = timeit.default_timer() - beg_enc_t
print('')
print('*' * 50)
print('Total processing and writing time: {} s'.format(end_enc_t))
if __name__ == '__main__':
flags = tf.app.flags
flags.DEFINE_string("wav_dir", "data/clean_trainset_wav_16k/", "Directory containing the wave files.")
flags.DEFINE_string("noisy_dir", "data/noisy_trainset_wav_16k/", "Directory containing the noisy wave files.")
flags.DEFINE_string("save_path", "data/", "Save path.")
flags.DEFINE_string("out_file", "segan.tfrecords", "Output filename.")
flags.DEFINE_boolean("force-gen", True, "Flag to force overwriting existing dataset")
'''
parser = argparse.ArgumentParser(description='Convert the set of txt and '
'wavs to TFRecords')
parser.add_argument(
'--wav_dir',
type=str,
default='data/clean_trainset_wav_16k/',
help='Directory containing the wave files ')
parser.add_argument(
'--noisy_dir',
type=str,
default='data/noisy_trainset_wav_16k/',
help='Directory containing the wave files ')
parser.add_argument(
'--save_path',
type=str,
default='data/',
help='Path to save the dataset')
parser.add_argument(
'--out_file',
type=str,
default='segan.tfrecords',
help='Output filename')
parser.add_argument(
'--force-gen',
dest='force_gen',
action='store_true',
help='Flag to force overwriting existing dataset.')
# parser.set_defaults(force_gen=False)
parser.set_defaults(force_gen=True)
opts = parser.parse_args()
main(opts)
'''
main(flags.FLAGS)