-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrumpbot-generate.py
194 lines (161 loc) · 6.59 KB
/
trumpbot-generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# -*- coding: UTF-8 -*-
'''Example script to generate text from Nietzsche's writings.
At least 20 epochs are required before the generated text
starts sounding coherent.
It is recommended to run this script on GPU, as recurrent
networks are quite computationally intensive.
If you try this script on new data, make sure your corpus
has at least ~100k characters. ~1M is better.
'''
from __future__ import print_function
from keras.models import Graph
from keras.layers.core import Dense, Activation, Dropout, TimeDistributedDense, Masking
from keras.layers.advanced_activations import ELU
from keras.layers.recurrent import LSTM
from keras.layers.normalization import BatchNormalization
from keras.layers.embeddings import Embedding
from keras.datasets.data_utils import get_file
from keras.preprocessing.sequence import pad_sequences
import gensim as gs
import numpy as np
import random
import os
import sys
import tweepy, time, sys
text = open('source.txt').read().lower()
text = text.replace(" - ", ", ")
text = text.replace(" t ", " to ")
text = text.replace(" st. louis ", " st louis ")
text = text.replace(" mr. ", " mister ")
text = text.replace(" mrs. ", " mistress ")
text = text.replace(" ms. ", " miss ")
text = text.replace(" feb. ", " february ")
text = text.replace(" dr. ", " doctor ")
text = text.replace(" gen. ", " general ")
text = text.replace(" gov. ", " governor ")
text = text.replace(" sen. ", " senator ")
text = text.replace(" sgt. ", " sergeant ")
text = text.replace(" rev. ", " reverend ")
text = text.replace(". no. ", ". number ")
text = text.replace(" jr. ", " junior ")
text = text.replace(".. ", ". ")
text = text.replace("penn.", "pennsylvania")
text = text.replace("wit-", "wit,")
text = text.replace("! ", " [xcm] ")
text = text.replace(". ", " [dot] ")
text = text.replace("? ", " [q] ")
text = text.replace(", ", " [comma] ")
text = text.replace(" $", " [dlr] ")
text = text.replace(": ", " [cln] ")
text = text.replace("; ", " [scln] ")
text = text.replace("% ", " [pcnt] ")
text = text.replace(" ", " ")
text = text.replace(" ", " ")
parsedWords = text.split(" ")
wordCoding = {}
codedWord = {}
codeNum = 1
codedVector = []
for word in parsedWords:
if not word in wordCoding:
wordCoding[word] = codeNum
codedWord[codeNum] = word
codeNum += 1
codedVector.append(wordCoding[word])
print('corpus length:', len(wordCoding))
print('Vectorization...')
vmodel = gs.models.Word2Vec.load('trump2vec')
input_dim = 300
lstm_hdim = 500
bridge_dim = 1000
dense_dim = 1500
sd_len = 12
batch_size = 128
sd_size = int(len(codedVector) / sd_len)
x_D = []# np.zeros((sc_size * sc_len, sc_len))
y_D = []# np.zeros((sc_size * sc_len, len(wordCoding)))
i_D = []
def one_hot(index):
retVal = np.zeros((len(wordCoding)), dtype=np.bool)
retVal[index] = 1
return retVal
for idx in range(0, sd_size - 1):
for iidx in range(0, sd_len - 1):
indexD = codedVector[idx * sd_len + iidx + 0:(idx + 1) * sd_len + iidx]
i_D.append(indexD)
vectorValD = [vmodel[myWord] for myWord in parsedWords[idx * sd_len + iidx + 0:(idx + 1) * sd_len + iidx]]
x_D.append(vectorValD)
y_D.append(one_hot(codedVector[(idx + 1) * sd_len + iidx]))
x_D = np.asarray(x_D)
y_D = np.asarray(y_D)
i_D = np.asarray(i_D)
layerNames = [
'tdd1',
'bn1',
'lstm1',
'bn2',
'lstm2',
'bn3',
'lstm3',
'bn4',
'dropout1',
'dense1',
'denseelu1',
'dropout2',
'dense2',
'densesm1',
]
# build the model: 2 stacked LSTM
print('shapes: ' + str((x_D.shape)))
print('Build model...')
model = Graph()
model.add_input(name='input', input_shape=(sd_len, input_dim))
model.add_node(TimeDistributedDense(input_dim=input_dim, output_dim=lstm_hdim, input_length=sd_len), name=layerNames[0], input='input')
model.add_node(BatchNormalization(), name=layerNames[1], input=layerNames[0])
model.add_node(LSTM(input_dim=lstm_hdim, output_dim=lstm_hdim, return_sequences=True), name=layerNames[2] + 'left', input=layerNames[1])
model.add_node(BatchNormalization(), name=layerNames[3] + 'left', input=layerNames[2] + 'left')
model.add_node(LSTM(input_dim=lstm_hdim, output_dim=lstm_hdim, return_sequences=True, go_backwards=True), name=layerNames[2] + 'right', input=layerNames[1])
model.add_node(BatchNormalization(), name=layerNames[3] + 'right', input=layerNames[2] + 'right')
model.add_node(LSTM(input_dim=lstm_hdim, output_dim=lstm_hdim, return_sequences=False), name=layerNames[6] + 'left', input=layerNames[3] + 'left')
model.add_node(LSTM(input_dim=lstm_hdim, output_dim=lstm_hdim, return_sequences=False, go_backwards=True), name=layerNames[6] + 'right', input=layerNames[3] + 'right')
model.add_node(BatchNormalization(), name=layerNames[7], inputs=[layerNames[6] + 'left', layerNames[6] + 'right'])
model.add_node(Dropout(0.2), name=layerNames[8], input=layerNames[7])
model.add_node(Dense(input_dim=bridge_dim, output_dim=dense_dim), name=layerNames[9], input=layerNames[8])
model.add_node(ELU(), name=layerNames[10], input=layerNames[9])
model.add_node(Dropout(0.2), name=layerNames[11], input=layerNames[10])
model.add_node(Dense(input_dim=dense_dim, output_dim=len(wordCoding)), name=layerNames[12], input=layerNames[11])
model.add_node(Activation('softmax'), name=layerNames[13], input=layerNames[12])
model.add_output(name='output1', input=layerNames[13])
model.compile(optimizer='rmsprop', loss={'output1':'categorical_crossentropy'})
def sample(a, temperature=1.0):
# helper function to sample an index from a probability array
a = np.log(a) / temperature
a = np.exp(a) / np.sum(np.exp(a))
return np.argmax(np.random.multinomial(1, a, 1))
# train the model, output generated text after each iteration
def get_sentence(wordVec):
sent = ''
for wordVal in wordVec:
sent += codedWord[wordVal] + ' '
return sent
if os.path.isfile('tb-weights'):
model.load_weights('tb-weights')
seedLen = sd_len
seedSrc = i_D
outSentences = []
while len(outSentences) < 100:
start_index = random.randint(0, len(seedSrc) - 1)
sentence = seedSrc[start_index: start_index + 1]
sentOutput = ''
for iteration in range(500):
vecsentence = []
for vcode in sentence[0]:
vecsentence.append(vmodel[codedWord[vcode]])
vecsentence = np.reshape(vecsentence, (1, len(vecsentence), 300))
preds = model.predict({'input':vecsentence}, verbose=0)['output1'][0]
next_index = sample(preds, 0.2)
if next_index in codedWord:
next_char = codedWord[next_index]
sentence = np.append(sentence[0][1:], [next_index]).reshape(np.asarray(sentence).shape)
sentOutput += next_char + ' '
print sentOutput