Note: We follow the guideline provided by MeshTransformer/docs/DOWNLOAD.md
-
Create folders that store pre-trained models and datasets.
export REPO_DIR=$PWD mkdir -p $REPO_DIR/models # pre-trained models mkdir -p $REPO_DIR/models/fastmetro_checkpoint # model checkpoints mkdir -p $REPO_DIR/datasets # datasets
-
Download HRNet-W64 pre-trained on ImageNet.
HRNet-W64 pre-trained models can be downloaded with the following command.
cd $REPO_DIR bash scripts/download_hrnet.sh
The resulting data structure should follow the hierarchy as below.
${REPO_DIR} |-- models | |-- fastmetro_checkpoint | |-- hrnet | | |-- hrnetv2_w64_imagenet_pretrained.pth | | |-- cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml |-- src |-- datasets |-- README.md |-- ... |-- ...
-
Download model checkpoints. Please put the downloaded files under the
${REPO_DIR}/models/fastmetro_checkpoint
directory.Model Dataset PA-MPJPE Link FastMETRO-S-R50 Human3.6M 38.8 Download FastMETRO-S-R50 3DPW 49.1 Download FastMETRO-L-H64 Human3.6M 33.6 Download FastMETRO-L-H64 3DPW 44.6 Download FastMETRO-L-H64 FreiHAND 6.5 Download Model Dataset PA-MPJPE Link FastMETRO-L-H64 Human3.6M 36.1 Download FastMETRO-L-H64 3DPW 51.0 Download - Model checkpoints were obtained in Conda Environment (CUDA 11.1)
- To use SMPL parameter regressor, you need to set
--use_smpl_param_regressor
asTrue
The resulting data structure would follow the hierarchy as below.
${REPO_DIR} |-- models | |-- fastmetro_checkpoint | | |-- FastMETRO-L-H64_h36m_state_dict.bin | | |-- FastMETRO-L-H64_3dpw_state_dict.bin | | |-- FastMETRO-L-H64_freihand_state_dict.bin | | |-- FastMETRO-L-H64_smpl_h36m_state_dict.bin | | |-- FastMETRO-L-H64_smpl_3dpw_state_dict.bin | | |-- ... | | |-- ... | |-- hrnet | | |-- hrnetv2_w64_imagenet_pretrained.pth | | |-- cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml |-- src |-- datasets |-- README.md |-- ... |-- ...
-
Download SMPL and MANO models
To run our code smoothly, please visit the following websites to download SMPL and MANO models.
- Download
basicModel_neutral_lbs_10_207_0_v1.0.0.pkl
from SMPLify, and place it at${REPO_DIR}/src/modeling/data
. - Download
MANO_RIGHT.pkl
from MANO, and place it at${REPO_DIR}/src/modeling/data
.
Please put the downloaded files under the
${REPO_DIR}/src/modeling/data
directory. The data structure should follow the hierarchy below.${REPO_DIR} |-- models |-- src | |-- modeling | | |-- data | | | |-- basicModel_neutral_lbs_10_207_0_v1.0.0.pkl | | | |-- MANO_RIGHT.pkl |-- datasets |-- README.md |-- ... |-- ...
Please check /src/modeling/data/README.md for further details.
- Download
-
Download datasets and pseudo labels for training.
We recommend to download large files with AzCopy for faster speed. AzCopy executable tools can be downloaded here. Decompress the azcopy tar file and put the executable in any path.
To download the annotation files, please use the following command.
cd $REPO_DIR path/to/azcopy copy 'https://datarelease.blob.core.windows.net/metro/datasets/filename.tar' /path/to/your/folder/filename.tar tar xvf filename.tar
filename.tar
could beTax-H36m-coco40k-Muco-UP-Mpii.tar
,human3.6m.tar
,coco_smpl.tar
,muco.tar
,up3d.tar
,mpii.tar
,3dpw.tar
,freihand.tar
. Total file size is about 200 GB.The datasets and pseudo ground truth labels are provided by Pose2Mesh. We only reorganize the data format to better fit our training pipeline. We suggest to download the orignal image files from the offical dataset websites.
The
datasets
directory structure should follow the below hierarchy.${ROOT} |-- models |-- src |-- datasets | |-- Tax-H36m-coco40k-Muco-UP-Mpii | | |-- train.yaml | | |-- train.linelist.tsv | | |-- train.linelist.lineidx | |-- human3.6m | | |-- train.img.tsv | | |-- train.hw.tsv | | |-- train.linelist.tsv | | |-- smpl/train.label.smpl.p1.tsv | | |-- smpl/train.linelist.smpl.p1.tsv | | |-- valid.protocol2.yaml | | |-- valid_protocol2/valid.img.tsv | | |-- valid_protocol2/valid.hw.tsv | | |-- valid_protocol2/valid.label.tsv | | |-- valid_protocol2/valid.linelist.tsv | |-- coco_smpl | | |-- train.img.tsv | | |-- train.hw.tsv | | |-- smpl/train.label.tsv | | |-- smpl/train.linelist.tsv | |-- muco | | |-- train.img.tsv | | |-- train.hw.tsv | | |-- train.label.tsv | | |-- train.linelist.tsv | |-- up3d | | |-- trainval.img.tsv | | |-- trainval.hw.tsv | | |-- trainval.label.tsv | | |-- trainval.linelist.tsv | |-- mpii | | |-- train.img.tsv | | |-- train.hw.tsv | | |-- train.label.tsv | | |-- train.linelist.tsv | |-- 3dpw | | |-- train.img.tsv | | |-- train.hw.tsv | | |-- train.label.tsv | | |-- train.linelist.tsv | | |-- test_has_gender.yaml | | |-- has_gender/test.img.tsv | | |-- has_gender/test.hw.tsv | | |-- has_gender/test.label.tsv | | |-- has_gender/test.linelist.tsv | |-- freihand | | |-- train.yaml | | |-- train.img.tsv | | |-- train.hw.tsv | | |-- train.label.tsv | | |-- train.linelist.tsv | | |-- test.yaml | | |-- test.img.tsv | | |-- test.hw.tsv | | |-- test.label.tsv | | |-- test.linelist.tsv |-- README.md |-- ... |-- ...