-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_pytorch.py
130 lines (109 loc) · 4.93 KB
/
linear_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as func
from option import BasicOption
import numpy as np
import time
class LinearModuler(nn.Module):
def __init__(self, num_feature, num_class):
super(LinearModuler, self).__init__()
self.linear = nn.Linear(num_feature, num_class)
def forward(self, x):
return self.linear(x)
class LogisticModuler(nn.Module):
def __init__(self, num_feature, num_class):
super(LogisticModuler, self).__init__()
self.logistic = nn.Linear(num_feature, num_class)
def forward(self, x):
return func.softmax(self.logistic(x))
class BasicClassifier(object):
def __init__(self, options):
assert isinstance(options, BasicOption)
self.option = options
self.loss = nn.CrossEntropyLoss()
if option.model == "linear":
self.model = LinearModuler(options.num_feature, options.num_class)
elif option.model == "logistic":
self.model = LogisticModuler(options.num_feature, options.num_class)
if torch.cuda.is_available():
self.model = self.model.cuda()
self.optimizer = optim.SGD(self.model.parameters(), lr=options.lr)
def fit(self, x_train, y_train):
loss = 0
if not isinstance(x_train, torch.FloatTensor):
x_train = torch.from_numpy(x_train)
if not isinstance(y_train, torch.FloatTensor):
y_train = torch.from_numpy(y_train)
start = time.time()
for epoch in range(self.option.num_epochs):
inputs = Variable(x_train)
labels = Variable(y_train)
out = self.model(inputs)
train_loss = self.loss(out, labels)
self.optimizer.zero_grad()
train_loss.backward()
if torch.cuda.is_available():
loss += train_loss.cpu().data[0]
else:
loss += train_loss.data[0]
self.optimizer.step()
if (epoch + 1) % self.option.statistics_interval == 0:
end = time.time()
print('Epoch[{}/{}], Avg. Training loss: {:.4f}'.format(epoch + 1,
self.option.num_epochs,
loss / self.option.statistics_interval),
"{:.4f} sec/batch".format((end - start) * 1.0 / self.option.statistics_interval))
loss = 0
start = time.time()
class BasicRegression(object):
def __init__(self, options):
assert isinstance(options, BasicOption)
self.option = options
self.loss = nn.MSELoss()
if option.model == "linear":
self.model = LinearModuler(options.num_feature, 1)
elif option.model == "logistic":
self.model = LogisticModuler(options.num_feature, 1)
if torch.cuda.is_available():
self.model = self.model.cuda()
self.optimizer = optim.SGD(self.model.parameters(), lr=options.lr)
def fit(self, x_train, y_train):
loss = 0
if not isinstance(x_train, torch.FloatTensor):
x_train = torch.from_numpy(x_train)
if not isinstance(y_train, torch.FloatTensor):
y_train = torch.from_numpy(y_train)
start = time.time()
for epoch in range(self.option.num_epochs):
inputs = Variable(x_train)
labels = Variable(y_train)
out = self.model(inputs)
train_loss = self.loss(out, labels)
self.optimizer.zero_grad()
train_loss.backward()
if torch.cuda.is_available():
loss += train_loss.cpu().data[0]
else:
loss += train_loss.data[0]
self.optimizer.step()
if (epoch + 1) % self.option.statistics_interval == 0:
end = time.time()
print('Epoch[{}/{}], Avg. Training loss: {:.4f}'.format(epoch + 1,
self.option.num_epochs,
loss / self.option.statistics_interval),
"{:.4f} sec/batch".format((end - start) * 1.0 / self.option.statistics_interval))
loss = 0
start = time.time()
if __name__ == "__main__":
option = BasicOption('logistic', 1, 1, 0.001, 1000, 20)
model = BasicRegression(option)
x = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
model.fit(x, y)