forked from kennyjoseph/vaderSentiment
-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.txt
189 lines (166 loc) · 12.1 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
=======
Introduction
This README file describes the dataset of the paper:
VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text
C.J. Hutto and Eric Gilbert
Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
For questions, please contact:
C.J. Hutto
Georgia Institute of Technology, Atlanta, GA 30032
=======
Citation Information
If you use either the dataset or any of the VADER sentiment analysis tools (VADER sentiment lexicon or Python code for rule-based sentiment analysis engine) in your research, please cite the above paper. For example:
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
=======
Resource and Dataset Descriptions
This zip file includes:
PRIMARY RESOURCES:
1. vader_icwsm2014_final.pdf
The original paper for the data set, see citation information (above).
2. vader_sentiment_lexicon.txt
Empirically validated by multiple independent human judges, VADER incorporates a
"gold-standard" sentiment lexicon that is especially attuned to microblog-like contexts.
The VADER sentiment lexicon is sensitive both the polarity and the intensity of sentiments
expressed in social media contexts, and is also generally applicable to sentiment analysis
in other domains.
Manually creating (much less, validating) a comprehensive sentiment lexicon is
a labor intensive and sometimes error prone process, so it is no wonder that many
opinion mining researchers and practitioners rely so heavily on existing lexicons
as primary resources. We are pleased to offer ours as a new resource.
We begin by constructing a list inspired by examining existing well-established
sentiment word-banks (LIWC, ANEW, and GI). To this, we next incorporate numerous
lexical features common to sentiment expression in microblogs, including
- a full list of Western-style emoticons, for example, :-) denotes a smiley face
and generally indicates positive sentiment)
- sentiment-related acronyms and initialisms (e.g., LOL and WTF are both examples of
sentiment-laden initialisms)
- commonly used slang with sentiment value (e.g., nah, meh and giggly).
This process provided us with over 9,000 lexical feature candidates. Next, we assessed
the general applicability of each feature candidate to sentiment expressions. We
used a wisdom-of-the-crowd13 (WotC) approach (Surowiecki, 2004) to acquire a valid
point estimate for the sentiment valence (intensity) of each context-free candidate
feature. We collected intensity ratings on each of our candidate lexical features
from ten independent human raters (for a total of 90,000+ ratings). Features were
rated on a scale from "[–4] Extremely Negative" to "[4] Extremely Positive", with
allowance for "[0] Neutral (or Neither, N/A)".
We kept every lexical feature that had a non-zero mean rating, and whose standard
deviation was less than 2.5 as determined by the aggregate of ten independent raters.
This left us with just over 7,500 lexical features with validated valence scores that
indicated both the sentiment polarity (positive/negative), and the sentiment intensity
on a scale from –4 to +4. For example, the word "okay" has a positive valence of 0.9,
"good" is 1.9, and "great" is 3.1, whereas "horrible" is –2.5, the frowning emoticon :(
is –2.2, and "sucks" and it's slang derivative "sux" are both –1.5.
3. vaderSentiment.py
The Python code for the rule-based sentiment analysis engine. Implements the
grammatical and syntactical rules described in the paper, incorporating empirically
derived quantifications for the impact of each rule on the perceived intensity of
sentiment in sentence-level text. Importantly, these heuristics go beyond what would
normally be captured in a typical bag-of-words model. They incorporate **word-order
sensitive relationships** between terms. For example, degree modifiers (also called
intensifiers, booster words, or degree adverbs) impact sentiment intensity by either
increasing or decreasing the intensity. Consider these examples:
(a) "The service here is extremely good"
(b) "The service here is good"
(c) "The service here is marginally good"
From Table 3 in the paper, we see that for 95% of the data, using a degree modifier
increases the positive sentiment intensity of example (a) by 0.227 to 0.36, with a
mean difference of 0.293 on a rating scale from 1 to 4. Likewise, example (c) reduces
the perceived sentiment intensity by 0.293, on average.
DATASETS AND TESTING RESOURCES:
4. tweets_GroundTruth.txt
FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, and TWEET-TEXT
DESCRIPTION: includes "tweet-like" text as inspired by 4,000 tweets pulled from Twitter’s public timeline, plus 200 completely contrived tweet-like texts intended to specifically test syntactical and grammatical conventions of conveying differences in sentiment intensity. The "tweet-like" texts incorporate a fictitious username (@anonymous) in places where a username might typically appear, along with a fake URL ( http://url_removed ) in places where a URL might typically appear, as inspired by the original tweets. The ID and MEAN-SENTIMENT-RATING correspond to the raw sentiment rating data provided in 'tweets_anonDataRatings.txt' (described below).
5. tweets_anonDataRatings.txt
FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, STANDARD DEVIATION, and RAW-SENTIMENT-RATINGS
DESCRIPTION: Sentiment ratings from a minimum of 20 independent human raters (all pre-screened, trained, and quality checked for optimal inter-rater reliability).
6. nytEditorialSnippets_GroundTruth.txt
FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, and TEXT-SNIPPET
DESCRIPTION: includes 5,190 sentence-level snippets from 500 New York Times opinion news editorials/articles; we used the NLTK tokenizer to segment the articles into sentence phrases, and added sentiment intensity ratings. The ID and MEAN-SENTIMENT-RATING correspond to the raw sentiment rating data provided in 'nytEditorialSnippets_anonDataRatings.txt' (described below).
7. nytEditorialSnippets_anonDataRatings.txt
FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, STANDARD DEVIATION, and RAW-SENTIMENT-RATINGS
DESCRIPTION: Sentiment ratings from a minimum of 20 independent human raters (all pre-screened, trained, and quality checked for optimal inter-rater reliability).
8. movieReviewSnippets_GroundTruth.txt
FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, and TEXT-SNIPPET
DESCRIPTION: includes 10,605 sentence-level snippets from rotten.tomatoes.com. The snippets were derived from an original set of 2000 movie reviews (1000 positive and 1000 negative) in Pang & Lee (2004); we used the NLTK tokenizer to segment the reviews into sentence phrases, and added sentiment intensity ratings. The ID and MEAN-SENTIMENT-RATING correspond to the raw sentiment rating data provided in 'movieReviewSnippets_anonDataRatings.txt' (described below).
9. movieReviewSnippets_anonDataRatings.txt
FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, STANDARD DEVIATION, and RAW-SENTIMENT-RATINGS
DESCRIPTION: Sentiment ratings from a minimum of 20 independent human raters (all pre-screened, trained, and quality checked for optimal inter-rater reliability).
10. amazonReviewSnippets_GroundTruth.txt
FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, and TEXT-SNIPPET
DESCRIPTION: includes 3,708 sentence-level snippets from 309 customer reviews on 5 different products. The reviews were originally used in Hu & Liu (2004); we added sentiment intensity ratings. The ID and MEAN-SENTIMENT-RATING correspond to the raw sentiment rating data provided in 'amazonReviewSnippets_anonDataRatings.txt' (described below).
11. amazonReviewSnippets_anonDataRatings.txt
FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, STANDARD DEVIATION, and RAW-SENTIMENT-RATINGS
DESCRIPTION: Sentiment ratings from a minimum of 20 independent human raters (all pre-screened, trained, and quality checked for optimal inter-rater reliability).
ADDITIONAL RESOURCES:
12. _README_.txt
This readme file
13. vader_sentiment_comparison_online_weblink
A short-cut hyperlinked to the online (web-based) sentiment comparison using a "light" version of VADER. http://www.socialai.gatech.edu/apps/sentiment.html .
=======
Python Code EXAMPLE:
from vaderSentiment import sentiment as vaderSentiment
#note: depending on how you installed (e.g., using source code download versus pip install), you may need to import like this:
#from vaderSentiment.vaderSentiment import sentiment as vaderSentiment
# --- example sentences -------
sentences = [
"VADER is smart, handsome, and funny.", # positive sentence example
"VADER is smart, handsome, and funny!", # punctuation emphasis handled correctly (sentiment intensity adjusted)
"VADER is very smart, handsome, and funny.", # booster words handled correctly (sentiment intensity adjusted)
"VADER is VERY SMART, handsome, and FUNNY.", # emphasis for ALLCAPS handled
"VADER is VERY SMART, handsome, and FUNNY!!!",# combination of signals - VADER appropriately adjusts intensity
"VADER is VERY SMART, really handsome, and INCREDIBLY FUNNY!!!",# booster words & punctuation make this close to ceiling for score
"The book was good.", # positive sentence
"The book was kind of good.", # qualified positive sentence is handled correctly (intensity adjusted)
"The plot was good, but the characters are uncompelling and the dialog is not great.", # mixed negation sentence
"A really bad, horrible book.", # negative sentence with booster words
"At least it isn't a horrible book.", # negated negative sentence with contraction
":) and :D", # emoticons handled
"", # an empty string is correctly handled
"Today sux", # negative slang handled
"Today sux!", # negative slang with punctuation emphasis handled
"Today SUX!", # negative slang with capitalization emphasis
"Today kinda sux! But I'll get by, lol" # mixed sentiment example with slang and constrastive conjunction "but"
].
for sentence in sentences:
print sentence,
vs = vaderSentiment(sentence)
print "\n\t" + str(vs)
# --- output for the above example code ---
VADER is smart, handsome, and funny.
{'neg': 0.0, 'neu': 0.254, 'pos': 0.746, 'compound': 0.8316}
VADER is smart, handsome, and funny!
{'neg': 0.0, 'neu': 0.248, 'pos': 0.752, 'compound': 0.8439}
VADER is very smart, handsome, and funny.
{'neg': 0.0, 'neu': 0.299, 'pos': 0.701, 'compound': 0.8545}
VADER is VERY SMART, handsome, and FUNNY.
{'neg': 0.0, 'neu': 0.246, 'pos': 0.754, 'compound': 0.9227}
VADER is VERY SMART, handsome, and FUNNY!!!
{'neg': 0.0, 'neu': 0.233, 'pos': 0.767, 'compound': 0.9342}
VADER is VERY SMART, really handsome, and INCREDIBLY FUNNY!!!
{'neg': 0.0, 'neu': 0.294, 'pos': 0.706, 'compound': 0.9469}
The book was good.
{'neg': 0.0, 'neu': 0.508, 'pos': 0.492, 'compound': 0.4404}
The book was kind of good.
{'neg': 0.0, 'neu': 0.657, 'pos': 0.343, 'compound': 0.3832}
The plot was good, but the characters are uncompelling and the dialog is not great.
{'neg': 0.327, 'neu': 0.579, 'pos': 0.094, 'compound': -0.7042}
A really bad, horrible book.
{'neg': 0.791, 'neu': 0.209, 'pos': 0.0, 'compound': -0.8211}
At least it isn't a horrible book.
{'neg': 0.0, 'neu': 0.637, 'pos': 0.363, 'compound': 0.431}
:) and :D
{'neg': 0.0, 'neu': 0.124, 'pos': 0.876, 'compound': 0.7925}
{'neg': 0.0, 'neu': 0.0, 'pos': 0.0, 'compound': 0.0}
Today sux
{'neg': 0.714, 'neu': 0.286, 'pos': 0.0, 'compound': -0.3612}
Today sux!
{'neg': 0.736, 'neu': 0.264, 'pos': 0.0, 'compound': -0.4199}
Today SUX!
{'neg': 0.779, 'neu': 0.221, 'pos': 0.0, 'compound': -0.5461}
Today kinda sux! But I'll get by, lol
{'neg': 0.195, 'neu': 0.531, 'pos': 0.274, 'compound': 0.2228}
=======
Online (web-based) Sentiment Comparison using VADER
http://www.socialai.gatech.edu/apps/sentiment.html .
=======