diff --git a/src/ves/TD_Multicanonical.cpp b/src/ves/TD_Multicanonical.cpp index e991cbeb1f..57d21027cf 100644 --- a/src/ves/TD_Multicanonical.cpp +++ b/src/ves/TD_Multicanonical.cpp @@ -58,12 +58,9 @@ The advantage with respect to Wang-Landau is that instead of sampling the potent The algorithm works as follows. The target distribution for the potential energy is chosen to be: -\f[ -p(E)= \begin{cases} - \frac{1}{E_2-E_1} & \mathrm{if} \quad E_1s_0\\ - \end{cases} -\f] + +MISSING EQUATION TO BE FIXED + where \f$ s_0=0.6\f$ nm and \f$ \sigma=0.05\f$. To define this \f$ p(s) \f$ in Plumed the input is: \plumedfile diff --git a/user-doc/tutorials/others/ves-lugano2017-03-ves2.txt b/user-doc/tutorials/others/ves-lugano2017-03-ves2.txt index 6dc5de5b80..f64cf6ec57 100644 --- a/user-doc/tutorials/others/ves-lugano2017-03-ves2.txt +++ b/user-doc/tutorials/others/ves-lugano2017-03-ves2.txt @@ -75,14 +75,9 @@ p(s)=\frac{p_{\mathrm{WT}}(s) \, p_{\mathrm{barrier}}(s)} {\int ds \, p_{\mathrm{WT}}(s) \, p_{\mathrm{barrier}}(s)} \f] where \f$ p_{\mathrm{WT}}(s) \f$ is the well-tempered target distribution and: -\f[ -p_{\mathrm{barrier}}(s)= - \begin{cases} - \frac{1}{C} \: & \mathrm{if} \: ss_0\\ - \end{cases} -\f] + +MISSING EQUATION TO BE FIXED + with \f$ C \f$ a normalization factor. The files needed for this exercise are in the directory Example1. This target distribution can be specified in plumed using: