-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathsignals.lua
909 lines (847 loc) · 33.6 KB
/
signals.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
-- Copyright (C) 2017 Deyan Dobromirov
-- Signal processing functionalities library
if not debug.getinfo(3) then
print("This is a module to load with `local signals = require('signals')`.")
os.exit(1)
end
local tonumber = tonumber
local tostring = tostring
local type = type
local setmetatable = setmetatable
local math = math
local bit = bit
local signals = {}
local metaSignals = {}
local common = require("common")
local complex = require("complex")
local revArr = common.tableArrReverse
local byteSTR = common.bytesGetString
local byteUINT = common.bytesGetNumber
local byteMirr = common.binaryMirror
local isNumber = common.isNumber
local isNil = common.isNil
local logStatus = common.logStatus
local toBool = common.toBool
local isTable = common.isTable
local getSign = common.getSign
local binaryIsPower = common.binaryIsPower
local binaryNextBaseTwo = common.binaryNextBaseTwo
local tableArrTransfer = common.tableArrTransfer
local randomSetSeed = common.randomSetSeed
local randomGetNumber = common.randomGetNumber
local getPick = common.getPick
local binaryNeededBits = common.binaryNeededBits
local binaryMirror = common.binaryMirror
local isFunction = common.isFunction
local logConcat = common.logConcat
local logString = common.logString
local stringPadL = common.stringPadL
local stringPadR = common.stringPadR
local getDerivative = common.getDerivative
local tableClear = common.tableClear
local getClamp = common.getClamp
local getMargin = common.getMargin
local getAngNorm = common.getAngNorm
-- This holds header and format definition location
metaSignals["WAVE_HEADER"] = {
{
Name = "HEADER",
{"sGroupID" , 4, byteSTR , "char/4"},
{"dwFileLength", 4, byteUINT, "uint" },
{"sRiffType" , 4, byteSTR , "char/4"}
},
{
Name = "FORMAT",
{"sGroupID" , 4, byteSTR , "char/4" },
{"dwChunkSize" , 4, byteUINT, "uint" },
{"wFormatTag" , 2, byteUINT, "ushort" },
{"wChannels" , 2, byteUINT, "ushort" },
{"dwSamplesPerSec" , 4, byteUINT, "uint" },
{"dwAvgBytesPerSec", 4, byteUINT, "uint" }, -- sampleRate * blockAlign
{"wBlockAlign" , 2, byteUINT, "ushort" },
{"dwBitsPerSample" , 2, byteUINT, "uint" }
},
{
Name = "DATA",
{"sGroupID" , 4, byteSTR , "char/4"},
{"dwChunkSize" , 4, byteUINT, "uint" }
}
}
metaSignals["REALNUM_UNIT"] = complex.getNew(1, 0)
metaSignals["IMAGINE_UNIT"] = complex.getNew(0, 1)
metaSignals["COMPLEX_VEXP"] = complex.getNew(math.exp(1))
metaSignals["WIN_FLATTOP"] = {0.21557895, 0.41663158, 0.277263158, 0.083578947, 0.006947368}
metaSignals["WIN_NUTTALL"] = {0.36358190, 0.48917750, 0.136599500, 0.010641100}
metaSignals["WIN_BLKHARR"] = {0.35875000, 0.48829000, 0.141280000, 0.011680000}
metaSignals["DFT_PHASEFCT"] = {__top = 0}
-- Read an audio WAVE file giving the path /sN/
function signals.readWave(sN)
local fW, sE = io.open(tostring(sN or ""), "rb")
if(not fW) then return logStatus("signals.readWave: "..sE) end
local wData, hWave = {}, metaSignals["WAVE_HEADER"]
for I = 1, #hWave do local tdtPar = hWave[I]
wData[tdtPar.Name] = {}
local curChunk = wData[tdtPar.Name]
for J = 1, #tdtPar do local par = tdtPar[J]
local nam, arr, foo, typ = par[1], par[2], par[3], par[4]
curChunk[nam] = {}; local arrChunk = curChunk[nam]
for K = 1, arr do arrChunk[K] = fW:read(1):byte() end
if(typ == "uint" or typ == "ushort") then revArr(arrChunk) end
if(foo) then curChunk[nam] = foo(arrChunk, arr) end
end
end; local gID
gID = wData["HEADER"]["sGroupID"]
if(gID ~= "RIFF") then return logStatus("signals.readWave: Header mismatch <"..gID..">") end
gID = wData["HEADER"]["sRiffType"]
if(gID ~= "WAVE") then return logStatus("signals.readWave: Header not wave <"..gID..">") end
gID = wData["FORMAT"]["sGroupID"]
if(gID ~= "fmt ") then return logStatus("signals.readWave: Format invalid <"..gID..">") end
gID = wData["DATA"]["sGroupID"]
if(gID ~= "data") then return logStatus("signals.readWave: Data invalid <"..gID..">") end
local smpData = {}
local smpByte = (wData["FORMAT"]["dwBitsPerSample"] / 8)
local smpAll = wData["DATA"]["dwChunkSize"] / (smpByte * wData["FORMAT"]["wChannels"])
local totCnan = wData["FORMAT"]["wChannels"]
local curChan, isEOF = 1, false
wData["FORMAT"]["fDuration"] = smpAll / wData["FORMAT"]["dwSamplesPerSec"]
wData["FORMAT"]["fBitRate"] = smpAll * totCnan * wData["FORMAT"]["dwBitsPerSample"]
wData["FORMAT"]["fBitRate"] = wData["FORMAT"]["fBitRate"] / wData["FORMAT"]["fDuration"]
wData["FORMAT"]["fDataFill"] = 100 * (wData["DATA"]["dwChunkSize"] / wData["HEADER"]["dwFileLength"])
wData["DATA"]["dwSamplesPerChan"] = smpAll
while(not isEOF and smpAll > 0) do
if(curChan > totCnan) then curChan = 1 end
if(not smpData[curChan]) then smpData[curChan] = {__top = 1} end
local arrChan = smpData[curChan]
arrChan[arrChan.__top] = {}
local smpTop = arrChan[arrChan.__top]
for K = 1, smpByte do
local smp = fW:read(1)
if(not smp) then
logStatus("signals.readWave: Reached EOF for channel <"..curChan.."> sample <"..arrChan.__top..">")
isEOF = true; arrChan[arrChan.__top] = nil; break
end
smpTop[K] = smp:byte()
end
if(not isEOF) then
if(smpByte == 1) then
arrChan[arrChan.__top] = (byteUINT(smpTop) - 128) / 128
elseif(smpByte == 2) then -- Two bytes per sample
arrChan[arrChan.__top] = (byteUINT(smpTop) - 32760) / 32760
end
if(curChan == 1) then smpAll = smpAll - 1 end
arrChan.__top = arrChan.__top + 1
curChan = curChan + 1
else
logStatus("signals.readWave: Reached EOF before chunk size <"..smpAll..">")
smpAll = -1
end
end; fW:close()
return wData, smpData
end
-- Generate ramp signal
function signals.getRamp(nS, nE, nD)
local tS, iD = {}, 1; for dD = nS, nE, nD do
tS[iD] = dD; iD = iD + 1 end; return tS
end
-- Generate periodical signal
function signals.setWave(tD, fW, nW, tT, nT, tS, nA, nB)
local nA, nB = (tonumber(nA) or 1), (tonumber(nB) or 1)
local nT, iD = (tonumber(nT) or 0), 1; while(tT[iD]) do
local vS = (tS and tS[iD]); vS = (vS and tS[iD] or 0)
tD[iD] = nA*vS + nB*fW(nW * tT[iD] + nT); iD = (iD+1)
end; return tD
end
-- Weights the signal trough the given window
function signals.setWeight(tD, tS, tW, tA, tB)
local bW, bA, bB = isNumber(tW), isNumber(tA), isNumber(tB)
local iD = 1; while(tS[iD]) do
local mW = (bW and tW or (tW and tonumber(tW[iD]) or 1))
local mA = (bA and tA or (tA and tonumber(tA[iD]) or 0))
local mB = (bB and tB or (tB and tonumber(tB[iD]) or 1))
tD[iD] = tS[iD] * mW + mA * mB; iD = (iD+1)
end; return tD
end
function signals.cnvCircleToLineFrq(nW)
return (nW / (2 * math.pi))
end
function signals.cnvLineToCircleFrq(nF)
return (2 * math.pi * nF)
end
function signals.cnvPeriodToLineFrq(nT)
return (1 / nT)
end
function signals.cnvLineFrqToPeriod(nF)
return (1 / nF)
end
-- Extend the signal by making a copy
function signals.getExtendBaseTwo(tS)
local nL, tO = #tS, {}; if(binaryIsPower(nL)) then
tableArrTransfer(tO, tS); return tO end
local nT = binaryNextBaseTwo(nL)
for iD = 1, nT do local vS = tS[iD]
if(vS) then tO[iD] = vS else tO[iD] = 0 end end; return tO
end
-- Extend the signal without making a copy
function signals.setExtendBaseTwo(tS) local nL = #tS
if(binaryIsPower(nL)) then return tS end
local nS, nE = (nL+1), binaryNextBaseTwo(nL)
for iD = nS, nE do tS[iD] = 0 end; return tS
end
-- Blackman window of length N
function signals.winBlackman(nN)
local nK = (2 * math.pi / (nN-1))
local tW, nN = {}, (nN-1)
for iD = 1, (nN+1) do local nP = nK*(iD-1)
tW[iD] = 0.42 - 0.5*math.cos(nP) + 0.08*math.cos(2*nP)
end; return tW
end
-- Hamming window of length N
function signals.winHamming(nN)
local tW, nN = {}, (nN-1)
local nK = (2 * math.pi / nN)
for iD = 1, (nN+1) do
tW[iD] = 0.54 - 0.46 * math.cos(nK * (iD - 1))
end; return tW
end
-- Gauss window of length N
function signals.winGauss(nN, vA)
local nA = getPick(vA, vA, 2.5)
local tW, nN = {}, (nN - 1)
local N2, nK = (nN / 2), (2*nA / (nN-1))
for iD = 1, (nN+1) do
local pN = nK*(iD - N2 - 1)
tW[iD] = math.exp(-0.5 * pN^2)
end; return tW
end
-- Barthann window of length N
function signals.winBarthann(nN)
local tW, nN = {}, (nN-1)
for iD = 1, (nN+1) do
local pN = (((iD-1) / nN) - 0.5)
tW[iD] = 0.62 - 0.48*math.abs(pN) + 0.38*math.cos(2*math.pi*pN)
end; return tW
end
-- Sinewave window of length N
function signals.winSine(nN)
local tW, nN = {}, (nN-1)
local nK = math.pi/nN
for iD = 1, (nN+1) do
tW[iD] = math.sin(nK*(iD-1))
end; return tW
end
-- Parabolic window of length N
function signals.winParabolic(nN)
local tW, nN = {}, (nN-1)
local nK = nN/2
for iD = 1, (nN+1) do
tW[iD] = 1-(((iD-1)-nK)/nK)^2
end; return tW
end
-- Hanning window of length N
function signals.winHann(nN)
local tW, nN = {}, (nN - 1)
local nK = (2 * math.pi / nN)
for iD = 1, (nN+1) do
local pN = (((iD-1) / nN) - 0.5)
tW[iD] = 0.5*(1-math.cos(nK*(iD-1)))
end; return tW
end
-- Flattop window of length N
function signals.winFlattop(nN,...)
local tP, tA = {...}, metaSignals["WIN_FLATTOP"]
for iD = 1, 5 do local vP = tP[iD]
tP[iD] = getPick(vP, vP, tA[iD]) end
local nN, tW = (nN - 1), {}
local nK = ((2 * math.pi) / nN)
for iD = 1, (nN+1) do local nM, nS = tP[1], 1
for iK = 2, 5 do nS = -nS
nM = nM + nS * tP[iK] * math.cos(nK * (iK-1) * (iD-1))
end; tW[iD] = nM
end; return tW
end
-- Triangle window of length N
function signals.winTriangle(nN)
local tW, nK, nS, nE = {}, 2/(nN-1), 1, nN
tW[nS], tW[nE] = 0, 0
nS, nE = (nS + 1), (nE - 1)
while(nS <= nE) do
tW[nS] = tW[nS-1] + nK
tW[nE] = tW[nE+1] + nK
nS, nE = (nS + 1), (nE - 1)
end; return tW
end
-- Nuttall window of length N
function signals.winNuttall(nN,...)
local tP, tA = {...}, metaSignals["WIN_NUTTALL"]
for iD = 1, 4 do local vP = tP[iD]
tP[iD] = getPick(vP, vP, tA[iD]) end
local nN, tW = (nN - 1), {}
local nK = ((2 * math.pi) / nN)
for iD = 1, (nN+1) do
local nM, nS = tP[1], 1
for iK = 2, 4 do nS = -nS
nM = nM + nS * tP[iK] * math.cos(nK * (iK-1) * (iD-1))
end; tW[iD] = nM
end; return tW
end
-- Blackman-Harris window of length N
function signals.winBlackHarris(nN,...)
local tP, tA = {...}, metaSignals["WIN_BLKHARR"]
for iD = 1, 4 do local vP = tP[iD]
tP[iD] = getPick(vP, vP, tA[iD]) end
local nN, tW = (nN - 1), {}
local nK = ((2 * math.pi) / nN)
for iD = 1, (nN+1) do
local nM, nS = tP[1], 1
for iK = 2, 4 do nS = -nS
nM = nM + nS * tP[iK] * math.cos(nK * (iK-1) * (iD-1))
end; tW[iD] = nM
end; return tW
end
-- Exponential/Poisson window of length N
function signals.winPoisson(nN, nD)
local nD, tW = (nD or 8.69), {}
local nT, nN = (2*nD)/(8.69*nN), (nN-1)
local N2 = (nN/2); for iD = 1, (nN+1) do
tW[iD] = math.exp(-nT*math.abs((iD-1)-N2))
end; return tW
end
-- Calculates the DFT phase factor single time
function signals.getPhaseFactorDFT(nK, nN)
if(nK == 0) then
return metaSignals["REALNUM_UNIT"]:getNew() end
local cE = metaSignals["COMPLEX_VEXP"]
local cI = metaSignals["IMAGINE_UNIT"]
local cK = cI:getNew(-2 * math.pi * nK, 0)
return cE:getPow(cK:Mul(cI):Div(2^nN, 0))
end
-- Removes the DFT phase factor for real-time
function signals.remPhaseFactorDFT(bG)
local tW = metaSignals["DFT_PHASEFCT"]
for iK, vV in pairs(tW) do tW[iK] = nil end
tW.__top = 0; if(bG) then
collectgarbage() end; return tW
end
-- Caches the DFT phase factor for real-time
function signals.setPhaseFactorDFT(nN)
local tW = signals.remPhaseFactorDFT()
local gW = signals.getPhaseFactorDFT
local nR = binaryNeededBits(nN-1)
for iD = 1, (nN/2) do tW[iD] = gW(iD-1, nR) end
tW.__top = #tW; return tW
end
-- Converts from phase number and butterfly count to index
local function cnvIndexDFT(iP, iA, N2)
local nT = (2^(iP - 1))
local nI = ((iA / nT) * N2)
return (math.floor(nI % N2) + 1)
end
function signals.getForwardDFT(tS)
local cZ = complex.getNew()
local aW = metaSignals["DFT_PHASEFCT"]
local tF = signals.getExtendBaseTwo(tS)
local nN, iM, tA, bW = #tF, 1, {}, (aW.__top > 0)
local tW = getPick(bW, aW, {})
for iD = 1, nN do tF[iD] = cZ:getNew(tF[iD]) end
local nR, N2 = binaryNeededBits(nN-1), (nN / 2)
for iD = 1, nN do tA[iD] = cZ:getNew()
local mID = (binaryMirror(iD-1, nR) + 1)
tA[iD]:Set(tF[mID]); if(not bW and iD <= N2) then
tW[iD] = signals.getPhaseFactorDFT(iD-1, nR) end
end; local cT = cZ:getNew()
for iP = 1, nR do -- Generation of tF in phase iP
for iK = 1, nN do -- Write down the cached phase factor
cT:Set(tW[cnvIndexDFT(iP, bit.band(iK-1, iM-1), N2)])
if(bit.band(iM, iK-1) ~= 0) then local iL = iK - iM
tF[iK]:Set(tA[iL]):Sub(cT:Mul(tA[iK]))
else local iL = iK + iM
tF[iK]:Set(tA[iK]):Add(cT:Mul(tA[iL]))
end -- One butterfly is completed
end; for iD = 1, nN do tA[iD]:Set(tF[iD]) end
iM = bit.lshift(iM, 1)
end; return tA
end
-- https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/
-- Column /A/ is for activation
-- Column /V/ is the activated value
-- newNeuralNet: Class neural network manager
local metaNeuralNet = {}
metaNeuralNet.__index = metaNeuralNet
metaNeuralNet.__type = "signals.neuralnet"
metaNeuralNet.__metatable = metaNeuralNet.__type
metaNeuralNet.__tostring = function(oNet) return oNet:getString() end
local function newNeuralNet(sName)
local self = {}; setmetatable(self, metaNeuralNet)
local mtData, mID, mName = {}, 1, tostring(sName or "NET")
local mfAct, mfOut, mtSum = nil, nil, {}; randomSetSeed()
local mfTran = function(nX) return nX end
function self:upLast(tE)
local iD = (mID - 1); tableClear(mtSum)
local tX = mtData[iD]; if(isNil(tX)) then
return logStatus("newNeuralNet/upLast: Missing next #"..tostring(vL), self) end
local tP = mtData[iD-1]; if(isNil(tP)) then
return logStatus("newNeuralNet/upLast: Missing prev #"..tostring(vL), self) end
for kE = 1, #tX.W do
mtSum[kE] = getDerivative(tX.A[kE], mfAct) * (tE[kE] - tX.V[kE])
for kI = 1, #tP.V do tX.D[kE][kI] = 0 end
for kI = 1, #tP.V do
tX.D[kE][kI] = tX.D[kE][kI] + (mtSum[kE] / tP.V[kI])
end
end; return self
end
-- Determine the delta hidden sum
function self:upRest()
local iD = (mID-1)
local tC = mtData[iD]; if(isNil(tC)) then
return logStatus("newNeuralNet/upRest: Missing curr #"..tostring(vL), self) end
local tX = mtData[iD-1]; if(isNil(tX)) then
return logStatus("newNeuralNet/upRest: Missing next #"..tostring(vL), self) end
local tP = mtData[iD-2]; if(isNil(tP)) then
return logStatus("newNeuralNet/upRest: Missing prev #"..tostring(vL), self) end
while(tX and tP) do
for iS = 1, #mtSum do
for iX = 1, #tX.V do for iP = 1, #tP.V do
print("tX.D["..iX.."]["..iP.."]", tX.A[iX], getDerivative(tX.A[iX], mfAct), tX.V[iX])
tX.D[iX][iP] = tX.D[iX][iP] + (mtSum[iS] / tC.W[iS][iX] * getDerivative(tX.A[iX], mfAct)) / (tP.A[iP] * #mtSum)
end end
end; iD = iD - 1
tC, tX, tP = mtData[iD], mtData[iD-1], mtData[iD-2]
end; return self
end
function self:resDelta()
local iD = 2; while(iD < mID) do
local dD = mtData[iD].D
for iK = 1, #dD do local tD = dD[iK]
for iN = 1, #tD do tD[iN] = 0 end
end; iD = iD + 1
end; return self
end
function self:appDelta()
local iD = 2; while(iD < mID) do
local dD, dW = mtData[iD].D, mtData[iD].W
for iK = 1, #dD do local tD, tW = dD[iK], dW[iK]
for iN = 1, #tD do tW[iN] = tW[iN] + tD[iN] end
end; iD = iD + 1
end; return self
end
function self:addLayer(...)
local tArg = {...}; nArg = #tArg
mtData[mID] = {}; mtData[mID].V = {}; mtData[mID].A = {}
if(mID > 1) then mtData[mID].W, mtData[mID].D = {}, {} end
for k = 1, #tArg do
if(not isTable(tArg[k])) then
return logStatus("newNeuralNet.addLayer: Weight #"..tostring(k).." not table", self) end
mtData[mID].V[k], mtData[mID].A[k] = 0, 0
if(mID > 1) then mtData[mID].W[k], mtData[mID].D[k] = {}, {}
for i = 1, #(mtData[mID-1].V) do mtData[mID].D[k][i] = 0
mtData[mID].W[k][i] = (tArg[k][i] or randomGetNumber()) end
end
end; mID = mID + 1; return self
end
function self:getString()
return ("["..metaNeuralNet.__type.."]: "..mName)
end
function self:remLayer()
mtData[mID] = nil; mID = (mID - 1); return self
end
function self:Process()
for iK = 2, (mID-1) do
local tNL, tPL = mtData[iK], mtData[iK-1]
for nID = 1, #tNL.A do tNL.A[nID], tNL.V[nID] = 0, 0
for pID = 1, #tPL.V do tNL.A[nID] = tNL.A[nID] + tNL.W[nID][pID] * tPL.V[pID]
end; tNL.V[nID] = mfAct(tNL.A[nID])
end
end; return self
end
function self:getOut(bOv)
if(mID < 2) then return {} end
local tV, vO = mtData[mID-1].V
if(bOv and mfOut) then vO = mfOut(tV)
else vO = {}; for k = 1, #tV do table.insert(vO, tV[k]) end
end; return vO
end
function self:setValue(...)
local tArg = {...}; nArg = #tArg
local tVal, tAct = mtData[1].V, mtData[1].A
for k = 1, #tVal do
local nV = tonumber(tArg[k] or 0)
tVal[k] = nV; tAct[k] = nV
end
return self
end
function self:setActive(fA, fD, fO)
if(isFunction(fA)) then mfAct = fA
local bS, aR = pcall(mfAct, 0)
if(not bS) then mfAct = logStatus("newNeuralNet.setActive(dif): Fail "..tostring(aR), self) end
else mfAct = logStatus("newNeuralNet.setActive(act): Skip", self) end
if(isFunction(fO)) then mfOut = fO
local bS, aR = pcall(mfOut, 0)
if(not bS) then mfOut = logStatus("newNeuralNet.setActive(out): Fail "..tostring(aR), self) end
else mfOut = logStatus("newNeuralNet.setActive(out): Skip", self) end
return self
end
function self:getWeightLayer(vLay)
local tW, mW = {}, mtData[iLay].W
for k = 1, #mW do tW[k] = {}
signals.setWeight(tW[k], mW[k])
end; return tW
end
function self:getValueLayer(vLay)
local iLay = math.floor(tonumber(vLay) or 0)
local tL = mtData[iLay]; if(isNil(tL)) then
return logStatus("newNeuralNet.getValueLayer: Missing layer #"..tostring(vLay), self) end
local tV, vV = {}, tL.V; for k = 1, #vV do tV[k] = vV[k]; end; return tV
end -- https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/
function self:Train(tT, vN, bL)
if(bL) then logStatus("Training ") end
local nN = getClamp(tonumber(vN) or 0, 1)
for iI = 1, nN do
for iT = 1, #tT do self:resDelta()
self:setValue(unpack(tT[iT][1])):Process()
self:upLast(tT[iT][2]):upRest():appDelta()
end; if(bL) then logString(".") end
end; if(bL) then logStatus(" done !") end; return self
end
function self:getNeuronsCnt()
local nC = 0; for k = 2, (mID-1) do
nC = nC + #mtData[k].V
end return nC
end
function self:getWeightsCnt()
local nC = 0; for k = 2, (mID-1) do
local mW = mtData[k].W
nC = nC + #mW * #(mW[1])
end return nC
end
function self:getType() return metaNeuralNet.__type end
function self:Dump(vL)
local sT = self:getType()
local iL = math.floor(tonumber(vL) or sT:len())
local dL = math.floor(getClamp(iL/5,1))
logStatus("["..self:getType().."] Properties:")
logStatus(" Name : "..mName)
logStatus(" Layers : "..(mID-1))
logStatus(" Neurons : "..self:getNeuronsCnt())
logStatus(" Weights : "..self:getWeightsCnt())
logStatus(" Internal weights and and values status:")
logConcat(stringPadL("V[1]",iL," ")..stringPadR("(1)",dL).." -> ",", ", unpack(mtData[1].V))
logConcat(stringPadL("A[1]",iL," ")..stringPadR("(1)",dL).." -> ",", ", unpack(mtData[1].A))
for k = 2, (mID-1) do local mW = mtData[k].W; for i = 1, #mW do
logConcat(stringPadL("W["..(k-1).."->"..k.."]",iL," ")..stringPadR("("..i..")",dL).." -> ",", ", unpack(mtData[k].W[i]))
logConcat(stringPadL("D["..(k-1).."->"..k.."]",iL," ")..stringPadR("("..i..")",dL).." -> ",", ", unpack(mtData[k].D[i]))
end
logConcat(stringPadL("A["..k.."]",iL," ")..stringPadR("("..(k-1)..")",dL).." -> ",", ", unpack(mtData[k].A))
logConcat(stringPadL("V["..k.."]",iL," ")..stringPadR("("..(k-1)..")",dL).." -> ",", ", unpack(mtData[k].V))
end; return self
end; return self
end
--[[
* newControl: Class state processing manager
* nTo > Controller sampling time in seconds
* arPar > Parameter array {Kp, Ti, Td, satD, satU}
]]
local metaControl = {}
metaControl.__index = metaControl
metaControl.__type = "signals.control"
metaControl.__metatable = metaControl.__type
metaControl.__tostring = function(oControl) return oControl:getString() end
local function newControl(nTo, sName)
local mTo = (tonumber(nTo) or 0); if(mTo <= 0) then -- Sampling time [s]
return logStatus(nil, "newControl: Sampling time <"..tostring(nTo).."> invalid") end
local self = {}; setmetatable(self, metaControl) -- Place to store the methods
local mfAbs = math and math.abs -- Function used for error absolute
local mfSgn = getSign -- Function used for error sign
local mErrO, mErrN = 0, 0 -- Error state values
local mvCon, meInt = 0, true -- Control value and integral enabled
local mvP, mvI, mvD = 0, 0, 0 -- Term values
local mkP, mkI, mkD = 0, 0, 0 -- P, I and D term gains
local mpP, mpI, mpD = 1, 1, 1 -- Raise the error to power of that much
local mbCmb, mbInv, mSatD, mSatU = true, false -- Saturation limits and settings
local mName, mType, mUser = (sName and tostring(sName) or "N/A"), "", {}
function self:getTerm(kV,eV,pV) return (kV*mfSgn(eV)*mfAbs(eV)^pV) end
function self:getGains() return mkP, mkI, mkD end
function self:getTerms() return mvP, mvI, mvD end
function self:setEnIntegral(bEn) meInt = toBool(bEn); return self end
function self:getEnIntegral() return meInt end
function self:getError() return mErrO, mErrN end
function self:getControl() return mvCon end
function self:getUser() return mUser end
function self:getType() return mType end
function self:getPeriod() return mTo end
function self:setPower(pP, pI, pD)
mpP, mpI, mpD = (tonumber(pP) or 0), (tonumber(pI) or 0), (tonumber(pD) or 0); return self end
function self:setClamp(sD, sU) mSatD, mSatU = (tonumber(sD) or 0), (tonumber(sU) or 0); return self end
function self:setStruct(bCmb, bInv) mbCmb, mbInv = toBool(bCmb), toBool(bInv); return self end
function self:Reset()
mErrO, mErrN = 0, 0
mvP, mvI, mvD = 0, 0, 0
mvCon, meInt = 0, true
return self
end
function self:Process(vRef,vOut)
mErrO = mErrN -- Refresh error state sample
mErrN = (mbInv and (vOut-vRef) or (vRef-vOut))
if(mkP > 0) then -- P-Term
mvP = self:getTerm(mkP, mErrN, mpP) end
if((mkI > 0) and (mErrN ~= 0) and meInt) then -- I-Term
mvI = self:getTerm(mkI, mErrN + mErrO, mpI) + mvI end
if((mkD ~= 0) and (mErrN ~= mErrO)) then -- D-Term
mvD = self:getTerm(mkD, mErrN - mErrO, mpD) end
mvCon = mvP + mvI + mvD -- Calculate the control signal
if(mSatD and mSatU) then -- Apply anti-windup effect
if (mvCon < mSatD) then mvCon, meInt = mSatD, false
elseif(mvCon > mSatU) then mvCon, meInt = mSatU, false
else meInt = true end
end; return self
end
function self:getString()
local sInfo = (mType ~= "") and (mType.."-") or mType
return ("["..sInfo..metaControl.__type.."]["..mName.."]["..tostring(mTo).."]s")
end
function self:Dump()
logStatus(self:getString().." Properties:")
for iD = 1, 5 do logStatus(" User["..iD.."]: "..tostring(mUser[iD])) end
logStatus(" Gains: {P="..tostring(mkP)..", I="..tostring(mkI)..", D="..tostring(mkD).."}")
logStatus(" Power: {P="..tostring(mpP)..", I="..tostring(mpI)..", D="..tostring(mpD).."}")
logStatus(" Limit: {D="..tostring(mSatD)..",U="..tostring(mSatU).."}")
logStatus(" Error: {"..tostring(mErrO)..", "..tostring(mErrN).."}")
logStatus(" Out : ["..tostring(mvCon).."]")
logStatus(" Value: {P="..tostring(mvP)..", I="..tostring(mvI)..", D="..tostring(mvD).."}"); return self
end
function self:Setup(arParam)
if(type(arParam) ~= "table") then
return logStatus("newControl.Setup: Parameter table <"..type(arParam).."> invalid") end
if(arParam[1] and (tonumber(arParam[1] or 0) > 0)) then
mkP = (tonumber(arParam[1] or 0))
else return logStatus("newControl.Setup: P-gain <"..tostring(arParam[1]).."> invalid") end
if(arParam[2] and (tonumber(arParam[2] or 0) > 0)) then
mkI = (mTo / (2 * (tonumber(arParam[2] or 0)))) -- Discrete integral approximation
if(mbCmb) then mkI = mkI * mkP end
else logStatus("newControl.Setup: I-gain <"..tostring(arParam[2]).."> skipped") end
if(arParam[3] and (tonumber(arParam[3] or 0) ~= 0)) then
mkD = (tonumber(arParam[3] or 0) * mTo) -- Discrete derivative approximation
if(mbCmb) then mkD = mkD * mkP end
else logStatus("newControl.Setup: D-gain <"..tostring(arParam[3]).."> skipped") end
if(arParam[4] and arParam[5] and ((tonumber(arParam[4]) or 0) < (tonumber(arParam[5]) or 0))) then
mSatD, mSatU = (tonumber(arParam[4]) or 0), (tonumber(arParam[5]) or 0)
else logStatus("newControl.Setup: Saturation skipped <"..tostring(arParam[4]).."<"..tostring(arParam[5]).."> skipped") end
mType = ((mkP > 0) and "P" or "")..((mkI > 0) and "I" or "")..((mkD > 0) and "D" or "")
for ID = 1, 5, 1 do mUser[ID] = arParam[ID] end; return self -- Init multiple states using the table
end
function self:Mul(nMul)
local Mul = (tonumber(nMul) or 0)
if(Mul <= 0) then return self end
for ID = 1, 5, 1 do mUser[ID] = mUser[ID] * Mul end
self:Setup(mUser); return self -- Init multiple states using the table
end
return self
end
-- https://www.mathworks.com/help/simulink/slref/discretefilter.html
local metaPlant = {}
metaPlant.__index = metaPlant
metaPlant.__type = "signals.plant"
metaPlant.__metatable = metaPlant.__type
metaPlant.__tostring = function(oPlant) return oPlant:getString() end
local function newPlant(nTo, tNum, tDen, sName)
local mDeg = #tDen; if(mDeg < #tNum) then
return logStatus("Plant physically impossible") end
if(tDen[1] == 0) then
return logStatus("Plant denominator invalid") end
local self, mTo = {}, (tonumber(nTo) or 0); setmetatable(self, metaPlant)
if(mTo <= 0) then return logStatus("Plant sampling time <"..tostring(nTo).."> invalid") end
local mName, mOut = tostring(sName or "Plant plant"), nil
local mSta, mDen, mNum = {}, {}, {}
for ik = 1, mDeg, 1 do mSta[ik] = 0 end
for iK = 1, mDeg, 1 do mDen[iK] = (tonumber(tDen[iK]) or 0) end
for iK = 1, mDeg, 1 do mNum[iK] = (tonumber(tNum[iK]) or 0) end
for iK = 1, (mDeg - #tNum), 1 do table.insert(mNum,1,0); mNum[#mNum] = nil end
function self:getOutput() return mOut end
function self:getOrder() return (mDeg - 1) end
function self:Scale()
local nK = mDen[1]
for iK = 1, mDeg do
mNum[iK] = (mNum[iK] / nK)
mDen[iK] = (mDen[iK] / nK)
end; return self
end
function self:getString()
return "["..metaPlant.__type.."]["..mName.."]["..tostring(mTo).."]s^"..self:getOrder()
end
function self:Dump()
logStatus(self:getString().." Properties:")
logStatus(" Numerator : {"..table.concat(mNum,", ").."}")
logStatus(" Denominator: {"..table.concat(mDen,", ").."}")
logStatus(" States : {"..table.concat(mSta,", ").."}"); return self
end
function self:getBeta()
local nOut, iK = 0, mDeg
while(iK > 0) do
nOut = nOut + (mNum[iK] or 0) * mSta[iK]
iK = iK - 1 -- Get next state
end; return nOut
end
function self:getAlpha()
local nOut, iK = 0, mDeg
while(iK > 1) do
nOut = nOut - (mDen[iK] or 0) * mSta[iK]
iK = iK - 1 -- Get next state
end; return nOut
end
function self:putState(vX)
local iK, nX = mDeg, (tonumber(vX) or 0)
while(iK > 0 and mSta[iK]) do
mSta[iK] = (mSta[iK-1] or 0); iK = iK - 1 -- Get next state
end; mSta[1] = nX; return self
end
function self:Process(vU)
local nU, nA = (tonumber(vU) or 0), self:getAlpha()
self:putState((nU + nA) / mDen[1]); mOut = self:getBeta(); return self
end
function self:Reset()
for iK = 1, #mSta, 1 do mSta[iK] = 0 end; mOut = 0; return self
end
return self
end
local metaWiper = {}
metaWiper.__index = metaWiper
metaWiper.__type = "signals.wiper"
metaWiper.__metatable = metaWiper.__type
metaWiper.__tostring = function(oWiper) return oWiper:getString() end
local function newWiper(nR, nF, nP, nD)
local mT = 0 -- Holds the time value
local mP = (tonumber(nP) or 0)
local mD = (tonumber(nD) or 0)
local mR = math.abs(tonumber(nR) or 0)
local mF = math.abs(tonumber(nF) or 0)
local mO, mW = complex.getNew(), (2 * math.pi * mF)
local mV = mO:getNew():Euler(mR, complex.toRad(mP))
local mN -- Next wiper attached to the tip of the prevoious
local self = {}; setmetatable(self, metaWiper)
function self:getNew(...) return newWiper(...) end
function self:getVec() return mV:getNew() end
function self:getOrg() return mO:getNew() end
function self:setOrg(...) mO:Set(...); return self end
function self:getPos() return mO:getAdd(mV) end
function self:setNext(...) mN = self:getNew(...); return self end
function self:addNext(...) self:setNext(...); return mN end
function self:getAbs() return mR end
function self:getNext() return mN end
function self:getFreq() return mF end
function self:getPhase() return mP end
function self:getDelta() return mD end
function self:Reverse(bN)
mP = mP + (bN and -180 or 180)
mV:Euler(mR, complex.toRad(mP)); return self
end
function self:Dump(bC)
logStatus(self:getString())
local oF, sC = self:getNext(), " "
if(bC) then while(oF) do
logStatus(sC..oF:getString())
oF = oF:getNext()
end; end; return self
end
function self:setDelta(nD)
mD = (tonumber(nD) or 0); return self
end
function self:setAbs(nR)
mR = math.abs(tonumber(nR) or 0)
mV:Euler(mR, complex.toRad(mP)); return self
end
function self:setPhase(nP, nA)
mP = getAngNorm((tonumber(nP) or 0) + (tonumber(nA) or 0))
mV:Euler(mR, complex.toRad(mP)); return self
end
function self:getString()
local sR, sF = self:getAbs(), self:getFreq()
local sP, sD = self:getPhase(), self:getDelta()
local sT = table.concat({sR, sF, sP, sD}, ",")
return ("["..metaWiper.__type.."]{"..sT.."}")
end
function self:setFreq(nF)
mF = math.abs(tonumber(nF) or 0); return self
end
function self:Update()
mT = mT + mD; mV:RotRad(mW * mD)
if(mN) then mN:Update() end; return self
end
function self:Draw(sKey, clDrw)
local vT = mO:getAdd(mV)
mO:Action(sKey, vT, clDrw)
if(mN) then mN:setOrg(vT):Draw(sKey, clDrw) end
return self
end
function self:getCount()
local nC, wC = 0, self
while(wC) do nC, wC = (nC + 1), wC:getNext() end
return nC
end
function self:getStage(nS)
local nS = getClamp(math.floor(tonumber(nS) or 0), 0)
local wC, ID = self, 1 -- Returns the wiper stage
while(ID <= nS and wC) do
wC, ID = wC:getNext(), (ID + 1) end; return wC
end
function self:getTip()
local wC, vT = self, mO:getNew()
while(wC) do -- Iterate as a list of pointers
vT:Add(wC:getVec())
wC = wC:getNext()
end; return vT
end
function self:getCopy()
local sR, sF = self:getAbs(), self:getFreq()
local sP, sD = self:getPhase(), self:getDelta()
return self:getNew(sR, sF, sP, sD)
end
function self:toSquare(nN, nP)
local nN, wC = getClamp(math.floor(tonumber(nN) or 0),0), self
self:setAbs(self:getAbs() * (4 / math.pi)):setPhase(nP)
local sR, sF = self:getAbs(), self:getFreq()
local sP, sD = self:getPhase(), self:getDelta()
for k = 2, nN do local n = (2 * k - 1)
local a = (1 / n)
wC = wC:addNext(a*sR, n*sF, sP, sD)
end; return self
end
function self:toTriangle(nN, nP)
local nN, wC = getClamp(math.floor(tonumber(nN) or 0),0), self
self:setAbs(self:getAbs() * (8 / math.pi^2)):setPhase(nP, 90)
local sR, sF = self:getAbs(), self:getFreq()
local sP, sD = self:getPhase(), self:getDelta()
for k = 1, nN-1 do
local n = (2 * k + 1)
local a = ((-1)^k)*(1/n^2)
wC = wC:addNext(a*sR, n*sF, sP, sD)
end; return self
end
function self:toSaw(nN, nP)
local nN, oF = getClamp(math.floor(tonumber(nN) or 0),0), self
self:setAbs(self:getAbs() / math.pi):setPhase(nP)
local sR, sF = self:getAbs(), self:getFreq()
local sP, sD = self:getPhase(), self:getDelta()
for k = 2, nN do local a = (((-1)^k) / k)
oF = oF:addNext(a*sR, k*sF, sP, sD)
end; return self
end
function self:toRand(nN, nP)
local nN, oF = getClamp(math.floor(tonumber(nN) or 0),0), self
local sR, sF = self:getAbs(), self:getFreq()
local sP, sD = self:getPhase(), self:getDelta(); self:setPhase(nP)
for k = 2, nN do
local a, b = common.randomGetNumber(), common.randomGetNumber()
local c, d = common.randomGetNumber(), common.randomGetNumber()
local r = math.exp((-0.618)*k*a)
oF = oF:addNext(r*sR, k*sF*b, sP*c, sD*d)
end; return self
end
return self
end
function signals.New(sType, ...)
local sType = "signals."..tostring(sType or "")
if(sType == metaControl.__type) then return newControl(...) end
if(sType == metaPlant.__type) then return newPlant(...) end
if(sType == metaNeuralNet.__type) then return newNeuralNet(...) end
if(sType == metaWiper.__type) then return newWiper(...) end
end
return signals