-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
847 lines (748 loc) · 24.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
import sys
from nnsearch.approx import Annoy, RKDTree, BoundaryF, FlannAuto, HKmeans, LSHFlann, LSHNearPy
from nnsearch.exact import BallTree, Brute, KDTree, KDTreeScikit, RTree, RSTree, PMTree
from nearpy.hashes import RandomBinaryProjections
from nearpy.distances import EuclideanDistance
from nnsearch.datasets import Dataset, load_dataset, samples
from nnsearch.flannindex import FlannIndex
import time
import datetime
import os
import random
import numpy as np
import cPickle
import math
import gc
#annoy parameters
annoy_params1 = {
"dimensions" : None,
"distance" : "euclidean",
"trees" : 1
}
annoy_params10 = {
"dimensions" : None,
"distance" : "euclidean",
"trees" : 10
}
annoy_params30 = {
"dimensions" : None,
"distance" : "euclidean",
"trees" : 30
}
annoy_params60 = {
"dimensions" : None,
"distance" : "euclidean",
"trees" : 60
}
annoy_params100 = {
"dimensions" : None,
"distance" : "euclidean",
"trees" : 100
}
annoy_params200 = {
"dimensions" : None,
"distance" : "euclidean",
"trees" : 200
}
annoy_params500 = {
"dimensions" : None,
"distance" : "euclidean",
"trees" : 500
}
annoy_params_neg1 = {
"dimensions" : None,
"distance" : "euclidean",
"trees" : -1
}
#------------------------------------------------------
#ball-tree parameters
ball_tree_params20 = {
"leaf_size" : 20,
"distance" : "euclidean"
}
#flann autotune
flann_params9 = {
"precision" : 0.9
}
flann_params7 = {
"precision" : 0.7
}
flann_params99 = {
"precision" : 0.99
}
#RKD-tree
rkdtree_params = {
"trees" : 16,
"precision": 0.99,
"checks": 5000
}
rkdtree_params2 = {
"trees" : 4,
"precision": 0.7
}
#KD-tree scikit
kdtree_scikit_params = {
"leaf_size" : 30,
"metric" : "euclidean"
}
#kmeans
kmeans_params = {
"branching" : 32,
"iterations" : 5,
"centers_init" : "random",
"cb_index" : 0.5,
"precision": 0.7,
}
kmeans_params2 = {
"branching" : 32,
"iterations" : 5,
"centers_init" : "default",
"cb_index" : 0.2,
"precision": 0.99,
"checks" : 15000
}
#lsh-flann
lshflann_params_6_12_0 = {
"nr_tables" : 6,
"key_size" : 12,
"multi_probe_level" : 0 #standard lsh
}
lshflann_params_6_12_0_99 = {
"nr_tables" : 6,
"key_size" :12,
"multi_probe_level" : 0, #standard lsh
"precision" : 0.99
}
lshflann_params_6_12_0_99 = {
"nr_tables" : 6,
"key_size" :12,
"multi_probe_level" : 0, #standard lsh
"precision" : 0.99
}
lshflann_params_6_12_0 = {
"nr_tables" : 6,
"key_size" :12,
"multi_probe_level" : 0
}
lshflann_params_6_12_1 = {
"nr_tables" : 6,
"key_size" :12,
"multi_probe_level" : 1
}
lshflann_params_6_12_2 = {
"nr_tables" : 6,
"key_size" :12,
"multi_probe_level" : 2
}
lshflann_params_6_12_2_99 = {
"nr_tables" : 6,
"key_size" :12,
"multi_probe_level" : 2,
"precision" : 0.99
}
lshflann_params_10_12_2 = {
"nr_tables" : 10,
"key_size" :12,
"multi_probe_level" : 2
}
lshflann_params_10_12_0 = {
"nr_tables" : 10,
"key_size" :12,
"multi_probe_level" : 0
}
lshflann_params_10_12_2_99 = {
"nr_tables" : 10,
"key_size" :12,
"multi_probe_level" : 2,
"precision" : 0.99
}
lshflann_params_10_12_0_99 = {
"nr_tables" : 10,
"key_size" :12,
"multi_probe_level" : 0, #standard lsh
"precision" : 0.99
}
lshflann_params_6_12_3 = {
"nr_tables" : 6,
"key_size" :12,
"multi_probe_level" : 3
}
lshflann_params_6_12_5 = {
"nr_tables" : 6,
"key_size" :12,
"multi_probe_level" : 5
}
#lsh-nearpy
lshnearpy_params5 = {
"lshashes" : [RandomBinaryProjections('default', 5)],
"distance" : EuclideanDistance()
}
lshnearpy_params10 = {
"lshashes" : [RandomBinaryProjections('default', 10)],
"distance" : EuclideanDistance()
}
lshnearpy_params20 = {
"lshashes" : [RandomBinaryProjections('default', 20)],
"distance" : EuclideanDistance()
}
lshnearpy_params50 = {
"lshashes" : [RandomBinaryProjections('default', 50)],
"distance" : EuclideanDistance()
}
lshnearpy_params100 = {
"lshashes" : [RandomBinaryProjections('default', 100)],
"distance" : EuclideanDistance()
}
#r-tree
rtree_params_l_5 = {
"dimensions" : None,
"max_node_size" : 5,
"method" : "linear"
}
rtree_params_q_5 = {
"dimensions" : None,
"max_node_size" : 5,
"method" : "quadratic"
}
rtree_params_l_25 = {
"dimensions" : None,
"max_node_size" : 25,
"method" : "linear"
}
rtree_params_q_25 = {
"dimensions" : None,
"max_node_size" : 25,
"method" : "quadratic"
}
rtree_params_l_100 = {
"dimensions" : None,
"max_node_size" : 100,
"method" : "linear"
}
rtree_params_q_100 = {
"dimensions" : None,
"max_node_size" : 100,
"method" : "quadratic"
}
#r*-tree
rstree_params_5 = {
"dimensions" : None,
"max_node_size" : 5
}
rstree_params_25 = {
"dimensions" : None,
"max_node_size" : 25
}
rstree_params_100 = {
"dimensions" : None,
"max_node_size" : 100
}
#pm-tree
mtree_params_5 = {
"max_node_size" : 5,
"p" : 0,
"nhr": 0,
"npd": 0,
"distance": "minkowski",
"mink_p": 2
}
mtree_params_25 = {
"max_node_size" : 25,
"p" : 0,
"nhr": 0,
"npd": 0,
"distance": "minkowski",
"mink_p": 2
}
mtree_params_100 = {
"max_node_size" : 100,
"p" : 0,
"nhr": 0,
"npd": 0,
"distance": "minkowski",
"mink_p": 2
}
pmtree_params_5_4_4 = {
"max_node_size" : 5,
"p" : 4,
"nhr": 4,
"npd": 4,
"distance": "minkowski",
"mink_p": 2
}
pmtree_params_25_4_4 = {
"max_node_size" : 25,
"p" : 4,
"nhr": 4,
"npd": 4,
"distance": "minkowski",
"mink_p": 2
}
pmtree_params_100_4_4 = {
"max_node_size" : 100,
"p" : 4,
"nhr": 4,
"npd": 4,
"distance": "minkowski",
"mink_p": 2
}
pmtree_params_5_32_4 = {
"max_node_size" : 5,
"p" :32,
"nhr": 32,
"npd": 4,
"distance": "minkowski",
"mink_p": 2
}
pmtree_params_25_32_4 = {
"max_node_size" : 25,
"p" :32,
"nhr": 32,
"npd": 4,
"distance": "minkowski",
"mink_p": 2
}
pmtree_params_100_32_4 = {
"max_node_size" : 100,
"p" :32,
"nhr": 32,
"npd": 4,
"distance": "minkowski",
"mink_p": 2
}
pmtree_params_5_64_8 = {
"max_node_size" : 5,
"p" : 64,
"nhr": 64,
"npd": 8,
"distance": "minkowski",
"mink_p": 2
}
pmtree_params_25_64_8 = {
"max_node_size" : 25,
"p" : 64,
"nhr": 64,
"npd": 8,
"distance": "minkowski",
"mink_p": 2
}
pmtree_params_100_64_8 = {
"max_node_size" : 100,
"p" : 64,
"nhr": 64,
"npd": 8,
"distance": "minkowski",
"mink_p": 2
}
#boundaryForest
bf_params_5_10_true = {
"trees": 5,
"max_node_size": 10,
"parallel": True
}
bf_params_5_10_false = {
"trees": 5,
"max_node_size": 10,
"parallel": False
}
bf_params_10_10_true = {
"trees": 10,
"max_node_size": 10,
"parallel": True
}
bf_params_10_10_false = {
"trees": 10,
"max_node_size": 10,
"parallel": False
}
bf_params_30_10_true = {
"trees": 30,
"max_node_size": 10,
"parallel": True
}
bf_params_30_10_false = {
"trees": 30,
"max_node_size": 10,
"parallel": False
}
bf_params_10_50_true = {
"trees": 10,
"max_node_size": 50,
"parallel": True
}
bf_params_10_50_false = {
"trees": 10,
"max_node_size": 50,
"parallel": False
}
bf_params_50_50_true = {
"trees": 50,
"max_node_size": 50,
"parallel": True
}
bf_params_50_50_false = {
"trees": 50,
"max_node_size": 50,
"parallel": False
}
algorithms_bruteforce = [
("Brute-force_cdef", Brute, {}, {}),
#("Brute-force_c1", Brute, {"cores":1}, {"cores":1}),
#("Brute-force_c2", Brute, {"cores":2}, {"cores":2}),
#("Brute-force_c4", Brute, {"cores":4}, {"cores":4}),
]
algorithms_approx = [
#("Annoy_1", Annoy, annoy_params1, {}),
#("Annoy_10", Annoy, annoy_params10, {}),
#("Annoy_30", Annoy, annoy_params30, {}),
#("Annoy_60", Annoy, annoy_params60, {}),
#("Annoy_100", Annoy, annoy_params100, {}),
#("Annoy_200", Annoy, annoy_params200, {}),
#("Annoy_500", Annoy, annoy_params500, {}),
#("Annoy_-1", Annoy, annoy_params_neg1, {}),
#("RKD-tree_cdef_7", RKDTree, rkdtree_params2, {}),
#("RKD-tree_c1_99", RKDTree, rkdtree_params, {"cores":1}),
("RKD-tree_cdef_99", RKDTree, rkdtree_params, {}),
#("flann9", FlannAuto, flann_params9, {}),
#("flann7", FlannAuto, flann_params7, {}),
#("RKD-tree_c2", RKDTree, rkdtree_params, {"cores":2}),
("RKD-tree_c4", RKDTree, rkdtree_params, {"cores":4}),
("kmeans_99", HKmeans, kmeans_params, {}),
#("lsh-nearpy_5", LSHNearPy, lshnearpy_params5, {}),
#("lsh-nearpy_10", LSHNearPy, lshnearpy_params10, {}),
#("lsh-nearpy_20", LSHNearPy, lshnearpy_params20, {}),
#("BF_5_10_parallel", BoundaryF, bf_params_5_10_true, {}),
#("BF_10_10_parallel", BoundaryF, bf_params_10_10_true, {}),
#("BF_10_10_parallel_n10", BoundaryF, dict(bf_params_10_10_true.items() + {"n":10}.items()), {})
]
algorithms_exact = [
("Ball-tree_20", BallTree, ball_tree_params20, {}), #TODO: res exact?
("kd-tree_scikit", KDTreeScikit, kdtree_scikit_params, {}), #TODO: res exact?
("kd-tree_flann_cdef", KDTree, {}, {}),
("kd-tree_flann_c1", KDTree, {"cores":1}, {"cores":1}),
("kd-tree_flann_c2", KDTree, {"cores":2}, {"cores":2}),
("kd-tree_flann_c4", KDTree, {"cores":4}, {"cores":4}),
#("R-tree_l_5", RTree, rtree_params_l_5, {}),
#("R-tree_q_5", RTree, rtree_params_q_5, {}),
#("R-tree_l_25", RTree, rtree_params_l_25, {}),
#("R-tree_q_25", RTree, rtree_params_q_25, {}),
#("R*-tree_5", RSTree, rstree_params_5, {}),
#("R*-tree_25", RSTree, rstree_params_25, {}),
#("M-tree_5", PMTree, mtree_params_5, {}),
#("M-tree_25", PMTree, mtree_params_25, {}),
("PM-tree_5_4_4", PMTree, pmtree_params_5_4_4, {}),
("PM-tree_25_4_4", PMTree, pmtree_params_25_4_4, {}),
#("PM-tree_5_32_4", PMTree, pmtree_params_5_32_4, {}),
#("PM-tree_25_32_4", PMTree, pmtree_params_25_32_4, {}),
#("PM-tree_5_64_8", PMTree, pmtree_params_5_64_8, {}),
#("PM-tree_25_64_8", PMTree, pmtree_params_25_64_8, {})
]
timer = time.clock
timer_time = time.time
knns_neighbors = {}
knns_distances = {}
build_timeout = 1200 #in seconds
current_distance = "euclidean"
def get_precision(index, nearest, dists, query_idx, k):
global knns_neighbors, knns_distances
correct = 0
eps = 0.000001
for x in knns_distances[k][query_idx].tolist():
if any(abs(x-y) < eps for y in dists.tolist()):
correct += 1
return correct / float(k)
def get_params(index, build_params, data):
if isinstance(index, Annoy):
return {"dimensions":len(data[0]), "metric": build_params["metric"]}
elif isinstance(index, BoundaryF):
res = {}
if "d" in build_params:
res["d"] = build_params["d"]
if "dc" in build_params:
res["dc"] = build_params["dc"]
return res
else: #isinstance(index, Brute) or isinstance(index, FlannIndex) or isinstance(index, LSHNearPy):
return {}
def time_build(index, ds, params):
start_cpu_time = time.time()
index.build(data=ds, **params)
build_cpu_time = time.time() - start_cpu_time
return build_cpu_time, index
def get_build_info(algo_name, algo, params, ds, dataset_dir):
global build_timeout
index = algo()
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
if not os.path.isfile(os.path.join(dataset_dir, algo_name+".p")):
sys.setrecursionlimit(500000000)
try:
build_cpu_time, index = timeout(time_build, args=(index, ds, params),
timeout_duration=build_timeout, default=(None, None))
except Exception, e:
#memory allocation failed
build_cpu_time = None
print e
if build_cpu_time is None:
if index.algorithm == "BoundaryForest":
#kill spawned processes
try:
for process in index.index.procs:
if process.is_alive():
process.terminate()
print "process terminated"
except Exception, e:
print e
return None, None
dont_pickle = ["BallTree-scikit", "Brute-force-flann", "KD-Tree-scikit", "BoundaryForest"]
if index.algorithm not in dont_pickle and not isinstance(index, FlannIndex):#!= "BoundaryForest":
try:
index.save(os.path.join(dataset_dir, algo_name+".p"))
with open(os.path.join(dataset_dir, algo_name+"_build_time.p"), "wb") as f:
cPickle.dump(build_cpu_time, f)
params = get_params(index, params, ds.data)
#pickle params
with open(os.path.join(dataset_dir, algo_name+"_params.p"), "wb") as f:
cPickle.dump(params, f)
index = algo()
if isinstance(index, FlannIndex) or isinstance(index, BoundaryF):#flann and BF need data
index.load(os.path.join(dataset_dir, algo_name+".p"), ds)
else:
index.load(os.path.join(dataset_dir, algo_name+".p"), **params)
except Exception as e:
print "couldnt pickle", algo_name
print "reason:", e
#pass
else:
print "%s, not saving it!" % (index.algorithm,)
else:
params = {}
with open(os.path.join(dataset_dir, algo_name+"_params.p"), "rb") as f:
params = cPickle.load(f)
if isinstance(index, FlannIndex) or isinstance(index, BoundaryF):#flann and BF need data
index.load(os.path.join(dataset_dir, algo_name+".p"), ds)
else:
try:
index.load(os.path.join(dataset_dir, algo_name+".p"), **params)
except Exception as e:
print "failed to load index!"
print "reason:", e
exit(0)
with open(os.path.join(dataset_dir, algo_name+"_build_time.p"), "rb") as f:
build_cpu_time = cPickle.load(f)
return build_cpu_time, index
def get_query_info(index, queries, ks, query_params):
global knns
global current_distance
query_times = {k:[] for k in ks} #for timer
query_times_time = {k:[] for k in ks} #for time.time
query_times_all_clock = {} #all queries together with time.clock
query_times_all_time = {} #all queries together with time.time
precisions = {k:[] for k in ks} #check for exact
missings = {k:[] for k in ks}
checked = None
dc = None
has_checked = False
if index.algorithm in ["PM-Tree", "R*-Tree", "R-Tree"]:
has_checked = True
checked = {k:[] for k in ks}
dc = {k:[] for k in ks}
#za flann da ni spikeov
if isinstance(index, FlannIndex):
for k in ks:
for query_idx, query in enumerate(queries):
_,_ = index.query(query, k, **query_params)
for k in ks:
for query_idx, query in enumerate(queries):
gc.disable() #disable garbage collector
start = timer()
start2 = timer_time()
nearest, dists = index.query(query, k, **query_params)
elapsed = timer() - start
elapsed2 = timer_time() - start2
gc.enable() #enable it again
query_times[k].append(elapsed)
query_times_time[k].append(elapsed2)
if index.algorithm == "Brute-force-flann":
if k not in knns_neighbors:
knns_neighbors[k] = {}
knns_distances[k] = {}
if current_distance == "euclidean":
dists = np.array([math.sqrt(y) for y in dists.tolist()])
knns_distances[k][query_idx] = dists
knns_neighbors[k][query_idx] = nearest
precisions[k].append(1.0)
else:
if index.algorithm == "BoundaryForest":
#get actual distances from nearest to query point, BF returns distances of reduced vectors
dists = np.array([index.index.dist_x(query, y) for y in nearest])
"""if k == 10 and query_idx == 0:
print "nearest 10 neighbors Forest:", nearest
print "nearest 10 dists:", dists"""
elif index.algorithm == "AnnoyIndex":
dists = np.array([index.get_dist(query, index.index.get_item_vector(x)) for x in nearest.tolist()])
elif isinstance(index, FlannIndex) and current_distance == "euclidean":
dists = np.array([math.sqrt(y) for y in dists.tolist()])
precisions[k].append(get_precision(index, nearest, dists, query_idx, k))
missings[k].append(k - len(dists))
if has_checked:
checked[k].append(index.index.checked_entries)
dc[k].append(index.index.dist_count)
#feed query with all queries at the same time instead 1 by 1
if index.algorithm in ["PM-Tree", "R*-Tree", "R-Tree", "LSH-NearPy"]:
query_times_all_clock[k] = -1.0
query_times_all_time[k] = -1.0
continue
gc.disable() #disable garbage collector
start3 = timer()
start4 = timer_time()
_, _ = index.query(queries, k, **query_params)
elapsed3 = timer() - start3
elapsed4 = timer_time() - start4
gc.enable() #enable it again
query_times_all_clock[k] = elapsed3
query_times_all_time[k] = elapsed4
return query_times, query_times_time, query_times_all_clock, query_times_all_time, precisions, missings, checked, dc
def save_info(algo_name, build_time, query_times, query_times_time, query_times_all_clock, query_times_all_time, precisions,
missings, checked, dc, ks, dataset_dir):
info = "build time:"+str(build_time)+"\n"
qt = 3
d = {"name": algo_name, "build_time": build_time, "query_times": query_times, "query_times_time": query_times_time,
"query_times_all_clock": query_times_all_clock, "query_times_all_time": query_times_all_time,
"precisions": precisions, "missings": missings, "checked": checked, "dc": dc}
for k in ks:
info += "----------NR OF QUERY POINTS:%d---------\n" % (k,)
info += "---TIMER with time.clock()---:\n"
info += "query_times[:3]:%s\n" % (str(query_times[k][:qt]),)
info += "avg query time:%f\n" % (np.mean(query_times[k]),)
info += "std of query times:%f\n" % (np.std(query_times[k]),)
info += "query_times_all_clock:%f\n" % (query_times_all_clock[k],)
info += "query_times_all_clock avg per query:%f\n" % (query_times_all_clock[k]/float(len(query_times[k])),)
info += "---TIMER with time.time()---:\n"
info += "query_times:%s\n" % (str(query_times_time[k][:qt]),)
info += "avg query time:%f\n" % (np.mean(query_times_time[k]),)
info += "std of query times:%f\n" % (np.std(query_times_time[k]),)
info += "query_times_all_time:%f\n" % (query_times_all_time[k],)
info += "query_times_all_time avg per query:%f\n" % (query_times_all_time[k]/float(len(query_times[k])),)
info += "---STATS---:\n"
info += "precision:%s\n" % (str(precisions[k][:qt]),)
info += "avg precision:%f\n" % (np.mean(precisions[k]),)
info += "std of precisions:%f\n" % (np.std(precisions[k]),)
info += "missings:%s\n" % (str(missings[k][:qt]),)
info += "avg missings:%f\n" % (np.mean(missings[k]),)
info += "std of missings:%f\n" % (np.std(missings[k]),)
info += "nr of non-empty missings:%d\n" % (len([x for x in missings[k] if x != 0][:qt]),)
if checked is not None:
info += "checked entries:%s\n" % (str(checked[k][:qt]),)
info += "avg checked:%f\n" % (np.mean(checked[k]),)
info += "std of checked:%f\n" % (np.std(checked[k]),)
info += "distance computations:%s\n" % (str(dc[k][:qt]),)
info += "avg dcs:%f\n" % (np.mean(dc[k]),)
info += "std of dcs:%f\n" % (np.std(dc[k]),)
info += "\n\n"
filename = os.path.join(dataset_dir, algo_name+".txt")
with open(filename, "w") as f:
f.write(info)
filename_pickle = os.path.join(dataset_dir, algo_name+"_info.p")
with open(filename_pickle, "wb") as f:
cPickle.dump(d, f)
def get_dir_name():
"""Returns the name of the directory."""
now = datetime.datetime.today()
rv = ""
for x in ['year', 'month', 'day', 'hour', 'minute']:
if x == 'hour':
rv = rv[:-1] + "___"
rv += str(getattr(now, x)) + "-"
return rv[:-1] # '2014-8-22__14-8'
def make_dir(dir_path):
"""Creates a directory with specified name."""
# Create a directory, if it exists, ignore the error.
if not os.path.exists(dir_path):
try:
os.makedirs(dir_path)
except OSError as exception:
raise
def timeout(func, args=(), kwargs={}, timeout_duration=1, default=None):
import signal
class TimeoutError(Exception):
pass
def handler(signum, frame):
raise TimeoutError()
# set the timeout handler
signal.signal(signal.SIGALRM, handler)
signal.alarm(timeout_duration)
try:
result = func(*args, **kwargs)
except TimeoutError as exc:
result = None, args[0] #None and index
finally:
signal.alarm(0)
return result
project_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
nr_queries = 100
ks = range(1, 11) + range(12, 51, 2)
test_ks = range(1, 60, 3)
dir_name = get_dir_name()
test_dir = os.path.join(os.path.join(project_dir, "run-script"), dir_name)
make_dir(test_dir)
queries_dir = "datasets/sample/queries"
make_dir(os.path.join(project_dir, queries_dir))
time_start = time.time()
for name in samples.keys():
#create folder for this test
queries_filename = queries_dir+"/"+name+"_queries.npy"
queries_filename = os.path.join(project_dir, queries_filename)
dataset_dir = os.path.join(test_dir, name) #folder for this dataset
make_dir(dataset_dir) #create folder
ds = load_dataset(name)
data = ds.data
if not os.path.isfile(queries_filename):
#generate queries
queries = random.sample(ds.data, nr_queries) #random query points from dataset
queries = np.array(queries)
np.save(queries_filename, queries)
print "queries saved! to:", queries_filename
else:
queries = np.load(queries_filename)
print "queries loaded! from:", queries_filename
print "Dataset: %s, dim:%d, examples:%d" % (ds.name, len(ds.data[0]), len(ds.data))
time_dataset = time.time()
algorithms = [aa for aa in algorithms_bruteforce]
if len(ds.data[0]) > 10:
algorithms += algorithms_approx
elif len(ds.data[0]) == 10:
algorithms += algorithms_exact
#algorithms += algorithms_approx
else:
algorithms += algorithms_exact
pickle_path = os.path.join(project_dir,"datasets/sample/builds/"+name)
make_dir(pickle_path)
for algo_name, algo, build_params, query_params in algorithms:
print "starting algo:", algo_name
try:
build_time, index = get_build_info(algo_name, algo, build_params, ds, pickle_path)
except Exception, e:
print "Failed --> dataset:%s, algorithm:%s" % (name, algo_name)
print "exception:", e
continue
if index is None:
print "Failed --> dataset:%s, algorithm:%s" % (name, algo_name)
continue
else:
print "starting querying..."
try:
time_query = time.time()
query_times, query_times_time, query_times_all_clock, query_times_all_time, precisions, missings, \
checked, dc = get_query_info(index, queries, ks, query_params)
print "finished --> build_time:%f, query_time:%f" % (build_time, time.time()-time_query)
save_info(algo_name, build_time, query_times, query_times_time, query_times_all_clock, query_times_all_time,
precisions, missings, checked, dc, ks, dataset_dir)
except Exception, e:
print "Failed --> dataset:%s, algorithm:%s" % (name, algo_name)
print "exception:", e
continue
if not gc.isenabled():
gc.enable()
gc.collect()
print "finished dataset:%s, time needed:%f" % (name, time.time()-time_dataset)
print "finished all, took:", (time.time() - time_start)