-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathfcn8s_tensorflow.py
952 lines (800 loc) · 52.8 KB
/
fcn8s_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
from distutils.version import LooseVersion
import tensorflow as tf
import warnings
from tqdm import trange
import sys
import os.path
import scipy.misc
import shutil
from glob import glob
from collections import deque
import numpy as np
import time
from helpers.tf_variable_summaries import add_variable_summaries
from helpers.visualization_utils import print_segmentation_onto_image, create_split_view
class FCN8s:
def __init__(self, model_load_dir=None, tags=None, vgg16_dir=None, num_classes=None, variables_load_dir=None):
'''
Arguments:
model_load_dir (string, optional): The directory path to a `SavedModel`, i.e. to the directory
that contains a saved FCN-8s model protocol buffer. If a path is provided, the targeted model will
be loaded. If no path is given, the model will be built from scratch on top of a pre-trained,
convolutionalized VGG-16 base network. `model_load_dir` and `vgg16_dir` may not both be `None`.
tags (list, optional): Only relevant if a path to a saved FCN-8s model is given in `model_load_dir`.
A list of strings containing the tags required to load the appropriate metagraph.
vgg16_dir (string, optional): Only relevant if no path to a saved FCN-8s model is given in `model_load_dir`.
The directory that contains a pretrained, convolutionalized VGG-16 model in the form of a protocol buffer.
`model_load_dir` and `vgg16_dir` may not both be `None`.
num_classes (int, optional): Only relevant if no path to a saved FCN-8s model is given in `model_load_dir`.
The number of segmentation classes.
variables_load_dir (string, optional): The path to variables that were saved with `tf.train.Saver`.
Only relevant if `model_load_dir` is `None`.
'''
# Check TensorFlow version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'This program requires TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))
if (model_load_dir is None) and (vgg16_dir is None or num_classes is None):
raise ValueError("You must provide either both `model_load_dir` and `tags` or both `vgg16_dir` and `num_classes`.")
self.variables_load_dir = variables_load_dir
self.model_load_dir = model_load_dir
self.tags = tags
self.vgg16_dir = vgg16_dir
self.vgg16_tag = 'vgg16'
self.num_classes = num_classes
self.variables_updated = False # Keep track of whether any variable values changed since this model was last saved.
self.eval_dataset = None # Which dataset to use for evaluation during training. Only relevant for training.
# The following lists store data about the metrics being tracked.
# Note that `self.metric_value_tensors` and `self.metric_update_ops` represent
# the metrics being tracked, not the metrics generally available in the model.
self.metric_names = [] # Store the metric names here.
self.metric_values = [] # Store the latest metric evaluations here.
self.best_metric_values = [] # Keep score of the best historical metric values.
self.metric_value_tensors = [] # Store the value tensors from tf.metrics here.
self.metric_update_ops = [] # Store the update ops from tf.metrics here.
self.training_loss = None
self.best_training_loss = 99999999.9
self.sess = tf.Session()
self.g_step = None # The global step
##################################################################
# Load or build the model.
##################################################################
if not model_load_dir is None: # Load the full pre-trained model.
tf.saved_model.loader.load(sess=self.sess, tags=self.tags, export_dir=self.model_load_dir)
graph = tf.get_default_graph()
# Get the input and output ops.
self.image_input = graph.get_tensor_by_name('image_input:0')
self.keep_prob = graph.get_tensor_by_name('keep_prob:0')
self.fcn8s_output = graph.get_tensor_by_name('decoder/fcn8s_output:0')
self.l2_regularization_rate = graph.get_tensor_by_name('l2_regularization_rate:0')
self.labels = graph.get_tensor_by_name('labels_input:0')
self.total_loss = graph.get_tensor_by_name('optimizer/total_loss:0')
self.train_op = graph.get_tensor_by_name('optimizer/train_op:0')
self.learning_rate = graph.get_tensor_by_name('optimizer/learning_rate:0')
self.global_step = graph.get_tensor_by_name('optimizer/global_step:0')
self.softmax_output = graph.get_tensor_by_name('predictor/softmax_output:0')
self.predictions_argmax = graph.get_tensor_by_name('predictor/predictions_argmax:0')
self.mean_loss_value = graph.get_tensor_by_name('metrics/mean_loss_value:0')
self.mean_loss_update_op = graph.get_tensor_by_name('metrics/mean_loss_update_op:0')
self.mean_iou_value = graph.get_tensor_by_name('metrics/mean_iou_value:0')
self.mean_iou_update_op = graph.get_tensor_by_name('metrics/mean_iou_update_op:0')
self.acc_value = graph.get_tensor_by_name('metrics/acc_value:0')
self.acc_update_op = graph.get_tensor_by_name('metrics/acc_update_op:0')
self.metrics_reset_op = graph.get_operation_by_name('metrics/metrics_reset_op')
self.summaries_training = graph.get_tensor_by_name('summaries_training:0')
self.summaries_evaluation = graph.get_tensor_by_name('summaries_evaluation:0')
# For some reason that I don't understand, the local variables belonging to the
# metrics need to be initialized after loading the model.
self.sess.run(self.metrics_reset_op)
else: # Load only the pre-trained VGG-16 encoder and build the rest of the graph from scratch.
# Load the pretrained convolutionalized VGG-16 model as our encoder.
self.image_input, self.keep_prob, self.pool3_out, self.pool4_out, self.fc7_out = self._load_vgg16()
# Build the decoder on top of the VGG-16 encoder.
self.fcn8s_output, self.l2_regularization_rate = self._build_decoder()
# Build the part of the graph that is relevant for the training.
self.labels = tf.placeholder(dtype=tf.int32, shape=[None, None, None, self.num_classes], name='labels_input')
self.total_loss, self.train_op, self.learning_rate, self.global_step = self._build_optimizer()
# Add the prediction outputs.
self.softmax_output, self.predictions_argmax = self._build_predictor()
# Add metrics for evaluation.
self.mean_loss_value, self.mean_loss_update_op, self.mean_iou_value, self.mean_iou_update_op, self.acc_value, self.acc_update_op, self.metrics_reset_op = self._build_metrics()
# Add summary ops for TensorBoard.
self.summaries_training, self.summaries_evaluation = self._build_summary_ops()
# Initialize the global and local (for the metrics) variables.
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
# Maybe load variables.
if not variables_load_dir is None:
saver = tf.train.Saver()
saver.restore(self.sess, variables_load_dir)
def _load_vgg16(self):
'''
Loads the pretrained, convolutionalized VGG-16 model into the session.
'''
# 1: Load the model
tf.saved_model.loader.load(sess=self.sess, tags=[self.vgg16_tag], export_dir=self.vgg16_dir)
# 2: Return the tensors of interest
graph = tf.get_default_graph()
vgg16_image_input_tensor_name = 'image_input:0'
vgg16_keep_prob_tensor_name = 'keep_prob:0'
vgg16_pool3_out_tensor_name = 'layer3_out:0'
vgg16_pool4_out_tensor_name = 'layer4_out:0'
vgg16_fc7_out_tensor_name = 'layer7_out:0'
image_input = graph.get_tensor_by_name(vgg16_image_input_tensor_name)
keep_prob = graph.get_tensor_by_name(vgg16_keep_prob_tensor_name)
pool3_out = graph.get_tensor_by_name(vgg16_pool3_out_tensor_name)
pool4_out = graph.get_tensor_by_name(vgg16_pool4_out_tensor_name)
fc7_out = graph.get_tensor_by_name(vgg16_fc7_out_tensor_name)
return image_input, keep_prob, pool3_out, pool4_out, fc7_out
def _build_decoder(self):
'''
Builds the FCN-8s decoder given the pool3, pool4, and fc7 outputs of the VGG-16 encoder.
'''
stddev_1x1 = 0.001 # Standard deviation for the 1x1 kernel initializers
stddev_conv2d_trans = 0.01 # Standard deviation for the convolution transpose kernel initializers
l2_regularization_rate = tf.placeholder(dtype=tf.float32, shape=[], name='l2_regularization_rate') # L2 regularization rate for the kernels
with tf.name_scope('decoder'):
# 1: Append 1x1 convolutions to the three output layers of the encoder to reduce the Number
# of channels to the number of classes.
# The outputs of pool3 and pool4 are being scaled in what the authors of
# the paper call the at-once training approach.
pool3_out_scaled = tf.multiply(self.pool3_out, 0.0001, name='pool3_out_scaled')
pool3_1x1 = tf.layers.conv2d(inputs=pool3_out_scaled,
filters=self.num_classes,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev_1x1),
kernel_regularizer=tf.contrib.layers.l2_regularizer(l2_regularization_rate),
name='pool3_1x1')
pool4_out_scaled = tf.multiply(self.pool4_out, 0.01, name='pool4_out_scaled')
pool4_1x1 = tf.layers.conv2d(inputs=pool4_out_scaled,
filters=self.num_classes,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev_1x1),
kernel_regularizer=tf.contrib.layers.l2_regularizer(l2_regularization_rate),
name='pool4_1x1')
fc7_1x1 = tf.layers.conv2d(inputs=self.fc7_out,
filters=self.num_classes,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev_1x1),
kernel_regularizer=tf.contrib.layers.l2_regularizer(l2_regularization_rate),
name='fc7_1x1')
# 2: Upscale and fuse until we're back at the original image size.
fc7_conv2d_trans = tf.layers.conv2d_transpose(inputs=fc7_1x1,
filters=self.num_classes,
kernel_size=(4, 4),
strides=(2, 2),
padding='same',
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev_conv2d_trans),
kernel_regularizer=tf.contrib.layers.l2_regularizer(l2_regularization_rate),
name='fc7_conv2d_trans')
add_fc7_pool4 = tf.add(fc7_conv2d_trans, pool4_1x1, name='add_fc7_pool4')
fc7_pool4_conv2d_trans = tf.layers.conv2d_transpose(inputs=add_fc7_pool4,
filters=self.num_classes,
kernel_size=(4, 4),
strides=(2, 2),
padding='same',
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev_conv2d_trans),
kernel_regularizer=tf.contrib.layers.l2_regularizer(l2_regularization_rate),
name='fc7_pool4_conv2d_trans')
add_fc7_pool4_pool3 = tf.add(fc7_pool4_conv2d_trans, pool3_1x1, name='add_fc7_pool4_pool3')
fc7_pool4_pool3_conv2d_trans = tf.layers.conv2d_transpose(inputs=add_fc7_pool4_pool3,
filters=self.num_classes,
kernel_size=(16, 16),
strides=(8, 8),
padding='same',
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev_conv2d_trans),
kernel_regularizer=tf.contrib.layers.l2_regularizer(l2_regularization_rate),
name='fc7_pool4_pool3_conv2d_trans')
fcn8s_output = tf.identity(fc7_pool4_pool3_conv2d_trans, name='fcn8s_output')
return fc7_pool4_pool3_conv2d_trans, l2_regularization_rate
def _build_optimizer(self):
'''
Builds the training-relevant part of the graph.
'''
with tf.name_scope('optimizer'):
# Create a training step counter.
global_step = tf.Variable(0, trainable=False, name='global_step')
# Create placeholder for the learning rate.
learning_rate = tf.placeholder(dtype=tf.float32, shape=[], name='learning_rate')
# Compute the regularizatin loss.
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) # This is a list of the individual loss values, so we still need to sum them up.
regularization_loss = tf.add_n(regularization_losses, name='regularization_loss') # Scalar
# Compute the total loss.
approximation_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.labels, logits=self.fcn8s_output), name='approximation_loss') # Scalar
total_loss = tf.add(approximation_loss, regularization_loss, name='total_loss')
# Compute the gradients and apply them.
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, name='adam_optimizer')
train_op = optimizer.minimize(total_loss, global_step=global_step, name='train_op')
return total_loss, train_op, learning_rate, global_step
def _build_predictor(self):
'''
Builds the prediction-relevant part of the graph.
'''
with tf.name_scope('predictor'):
softmax_output = tf.nn.softmax(self.fcn8s_output, name='softmax_output')
predictions_argmax = tf.argmax(softmax_output, axis=-1, name='predictions_argmax', output_type=tf.int64)
return softmax_output, predictions_argmax
def _build_metrics(self):
'''
Builds the evaluation-relevant part of the graph, i.e. the metrics operations.
'''
with tf.variable_scope('metrics') as scope:
labels_argmax = tf.argmax(self.labels, axis=-1, name='labels_argmax', output_type=tf.int64)
# 1: Mean loss
mean_loss_value, mean_loss_update_op = tf.metrics.mean(self.total_loss)
mean_loss_value = tf.identity(mean_loss_value, name='mean_loss_value')
mean_loss_update_op = tf.identity(mean_loss_update_op, name='mean_loss_update_op')
# 1: Mean IoU
mean_iou_value, mean_iou_update_op = tf.metrics.mean_iou(labels=labels_argmax,
predictions=self.predictions_argmax,
num_classes=self.num_classes)
mean_iou_value = tf.identity(mean_iou_value, name='mean_iou_value')
mean_iou_update_op = tf.identity(mean_iou_update_op, name='mean_iou_update_op')
# 2: Accuracy
acc_value, acc_update_op = tf.metrics.accuracy(labels=labels_argmax,
predictions=self.predictions_argmax)
acc_value = tf.identity(acc_value, name='acc_value')
acc_update_op = tf.identity(acc_update_op, name='acc_update_op')
# As of version 1.3, TensorFlow's streaming metrics don't have reset operations,
# so we need to create our own as a work-around. Say we want to evaluate
# a metric after every training epoch. If we didn't have
# a way to reset the metric's update op after every evaluation,
# the computed metric value would be the average of the current evaluation
# and all previous evaluations from past epochs, which is obviously not
# what we want.
local_metric_vars = tf.contrib.framework.get_variables(scope=scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
metrics_reset_op = tf.variables_initializer(var_list=local_metric_vars, name='metrics_reset_op')
return (mean_loss_value,
mean_loss_update_op,
mean_iou_value,
mean_iou_update_op,
acc_value,
acc_update_op,
metrics_reset_op)
def _build_summary_ops(self):
'''
Builds the part of the graph that logs summaries for TensorBoard.
'''
graph = tf.get_default_graph()
add_variable_summaries(variable=graph.get_tensor_by_name('pool3_1x1/kernel:0'), scope='pool3_1x1/kernel')
add_variable_summaries(variable=graph.get_tensor_by_name('pool3_1x1/bias:0'), scope='pool3_1x1/bias')
add_variable_summaries(variable=graph.get_tensor_by_name('pool4_1x1/kernel:0'), scope='pool4_1x1/kernel')
add_variable_summaries(variable=graph.get_tensor_by_name('pool4_1x1/bias:0'), scope='pool4_1x1/bias')
add_variable_summaries(variable=graph.get_tensor_by_name('fc7_1x1/kernel:0'), scope='fc7_1x1/kernel')
add_variable_summaries(variable=graph.get_tensor_by_name('fc7_1x1/bias:0'), scope='fc7_1x1/bias')
add_variable_summaries(variable=graph.get_tensor_by_name('fc7_conv2d_trans/kernel:0'), scope='fc7_conv2d_trans/kernel')
add_variable_summaries(variable=graph.get_tensor_by_name('fc7_conv2d_trans/bias:0'), scope='fc7_conv2d_trans/bias')
add_variable_summaries(variable=graph.get_tensor_by_name('fc7_pool4_conv2d_trans/kernel:0'), scope='fc7_pool4_conv2d_trans/kernel')
add_variable_summaries(variable=graph.get_tensor_by_name('fc7_pool4_conv2d_trans/bias:0'), scope='fc7_pool4_conv2d_trans/bias')
add_variable_summaries(variable=graph.get_tensor_by_name('fc7_pool4_pool3_conv2d_trans/kernel:0'), scope='fc7_pool4_pool3_conv2d_trans/kernel')
add_variable_summaries(variable=graph.get_tensor_by_name('fc7_pool4_pool3_conv2d_trans/bias:0'), scope='fc7_pool4_pool3_conv2d_trans/bias')
add_variable_summaries(variable=graph.get_tensor_by_name('fc7/weights:0'), scope='fc7/kernel')
add_variable_summaries(variable=graph.get_tensor_by_name('fc7/biases:0'), scope='fc7/bias')
add_variable_summaries(variable=graph.get_tensor_by_name('fc6/weights:0'), scope='fc6/kernel')
add_variable_summaries(variable=graph.get_tensor_by_name('fc6/biases:0'), scope='fc6/bias')
add_variable_summaries(variable=graph.get_tensor_by_name('conv4_3/filter:0'), scope='conv4_3/kernel')
add_variable_summaries(variable=graph.get_tensor_by_name('conv4_3/biases:0'), scope='conv4_3/bias')
add_variable_summaries(variable=graph.get_tensor_by_name('conv3_3/filter:0'), scope='conv3_3/kernel')
add_variable_summaries(variable=graph.get_tensor_by_name('conv3_3/biases:0'), scope='conv3_3/bias')
# Loss and learning rate.
tf.summary.scalar('total_loss', self.total_loss)
tf.summary.scalar('learning_rate', self.learning_rate)
summaries_training = tf.summary.merge_all()
summaries_training = tf.identity(summaries_training, name='summaries_training')
# All metrics.
mean_loss = tf.summary.scalar('mean_loss', self.mean_loss_value)
mean_iou = tf.summary.scalar('mean_iou', self.mean_iou_value)
accuracy = tf.summary.scalar('accuracy', self.acc_value)
summaries_evaluation = tf.summary.merge(inputs=[mean_loss,
mean_iou,
accuracy])
summaries_evaluation = tf.identity(summaries_evaluation, name='summaries_evaluation')
return summaries_training, summaries_evaluation
def _initialize_metrics(self, metrics):
'''
Initializes/resets the metrics before every call to `train` and `evaluate`.
'''
# Reset lists of previous tracked metrics.
self.metric_names = []
self.best_metric_values = []
self.metric_update_ops = []
self.metric_value_tensors = []
# Set the metrics that will be evaluated.
if 'loss' in metrics:
self.metric_names.append('loss')
self.best_metric_values.append(99999999.9)
self.metric_update_ops.append(self.mean_loss_update_op)
self.metric_value_tensors.append(self.mean_loss_value)
if 'mean_iou' in metrics:
self.metric_names.append('mean_iou')
self.best_metric_values.append(0.0)
self.metric_update_ops.append(self.mean_iou_update_op)
self.metric_value_tensors.append(self.mean_iou_value)
if 'accuracy' in metrics:
self.metric_names.append('accuracy')
self.best_metric_values.append(0.0)
self.metric_update_ops.append(self.acc_update_op)
self.metric_value_tensors.append(self.acc_value)
def train(self,
train_generator,
epochs,
steps_per_epoch,
learning_rate_schedule,
keep_prob=0.5,
l2_regularization=0.0,
eval_dataset='train',
eval_frequency=5,
val_generator=None,
val_steps=None,
metrics={},
save_during_training=False,
save_dir=None,
save_best_only=True,
save_tags=['default'],
save_name='',
save_frequency=5,
saver='saved_model',
monitor='loss',
record_summaries=True,
summaries_frequency=10,
summaries_dir=None,
summaries_name=None,
training_loss_display_averaging=3):
'''
Trains the model.
Arguments:
train_generator (generator): A generator that yields batches of images
and associated ground truth images in two separate Numpy arrays.
The images must be a 4D array with format `(batch_size, height, width, channels)`
and the ground truth images must be a 4D array with format
`(batch_size, height, width, num_classes)`, i.e. the ground truth
data must be provided in one-hot format.
epochs (int): The number of epochs to run the training for, where each epoch
consists of `steps_per_epoch` training steps.
steps_per_epoch (int): The number of training steps (i.e. batches processed)
per epoch.
learning_rate_schedule (function): Any function that takes as its sole input
an integer (the global step counter) and returns a float (the learning rate).
keep_prob (float, optional): The keep probability for the two dropout layers
in the VGG-16 encoder network. Defaults to 0.5.
l2_regularization (float, optional): The scaling factor for the L2 regularization
of all decoder kernels. 0 means no regularization at all. This has no effect
on the kernels of the VGG-16 encoder network. Defaults to 0.
eval_dataset (string, optional): Which generator to use for the evaluation
of the model during training. Can be either of 'train' (the train_generator
will be used) or 'val' (the val_generator will be used). Defaults to 'train',
but should be set to 'val' if a validation dataset is available.
eval_frequency (int, optional): The model will be evaluated on `metrics` after every
`eval_frequency` epochs. Defaults to 5.
val_generator (generator, optional): An optional second generator for a second
dataset (validation dataset), works the same way as `train_generator`.
val_steps (int, optional): The number of steps to run `val_generator` for
during evaluation.
metrics (set, optional): The metrics to be evaluated during training. A Python
set containing any subset of `{'loss', 'mean_iou', 'accuracy'}`, which are the
currently available metrics. Defaults to the empty set, meaning that the
model will not be evaluated during training.
save_during_training (bool, optional): Whether or not to save the model periodically
during training, the parameters of which can be set in the subsequent arguments.
Defaults to `False`.
save_dir (string, optional): The full path of the directory to save the model to
during training.
save_best_only (bool, optional): If `True`, the model will only be saved upon
evaluation if the metric defined by `monitor` has improved since it was last
measured before. Can only be `True` if `metrics` is not empty.
save_tags (list, optional): An optional list of tags to save the model metagraph
with in the SavedModel protocol buffer. Defaults to a list only containing
the tag 'default'. At least one tag must be given.
save_name (string, optional): An optional name string to include in the name of
the folder in which the model will be saved during training. Note that what
you pass as the name here will be only part of the folder name. The folder
name also includes a count of the global training step and the values of
any metrics that are being evaluate, although at least the training loss.
It is hence not necessary to pass a name here, each saved model will be
uniquely and descriptively named regardless. Defaults to the empty string.
save_frequency (int, optional): The model will be saved at most after every
`save_frequency` epochs, but possibly less often if `save_best_only` is `True`
and if there was no improvement in the monitored metric. Defaults to 5.
saver (string, optional): Which saver to use when saving the model during training.
Can be either of 'saved_model' in order to use `tf.saved_model` or 'train_saver'
in order to use `tf.train.Saver`. Defaults to `tf.saved_model`. Check the
TensorFlow documentation for details on which saver might be better for your
use case. In general you can't go wrong with either of the two.
monitor (string, optional): The name of the metric that is to be monitored in
order to decide whether the model should be saved. Can be one of
`{'loss', 'mean_iou', 'accuracy'}`, which are the currently available metrics.
Defaults to 'loss'.
record_summaries (bool, optional): Whether or not to record TensorBoard summaries.
Defaults to `True`.
summaries_frequency (int, optional): How often summaries should be logged for
tensors which are updated at every training step. The summaries for such tensors
will be recorded every `summaries_frequency` training steps. Defaults to 10.
summaries_dir (string, optional): The full path of the directory to which to
write the summaries protocol buffers.
summaries_name (string, optional): The name of the summaries buffers.
training_loss_display_averaging (int, optional): During training, the current
training loss is always displayed. Since training on mini-batches has the effect
that the loss might jump from training step to training step, this parameter
allows to average the displayed loss over tha lasst `training_loss_display_averaging`
training steps so that it shows a more representative picture of the actual
current loss. Defaults to 3.
'''
# Check for a GPU
if not tf.test.gpu_device_name():
warnings.warn('No GPU found. Please note that training this network will be unbearably slow without a GPU.')
else:
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
if not eval_dataset in ['train', 'val']:
raise ValueError("`eval_dataset` must be one of 'train' or 'val', but is '{}'.".format(eval_dataset))
if (eval_dataset == 'val') and ((val_generator is None) or (val_steps is None)):
raise ValueError("When eval_dataset == 'val', a `val_generator` and `val_steps` must be passed.")
for metric in metrics:
if not metric in ['loss', 'mean_iou', 'accuracy']:
raise ValueError("{} is not a valid metric. Valid metrics are ['loss', mean_iou', 'accuracy']".format(metric))
if (not monitor in metrics) and (not monitor == 'loss'):
raise ValueError('You are trying to monitor {}, but it is not in `metrics` and is therefore not being computed.'.format(monitor))
self.eval_dataset = eval_dataset
self.g_step = self.sess.run(self.global_step)
learning_rate = learning_rate_schedule(self.g_step)
self._initialize_metrics(metrics)
# Set up the summary file writers.
if record_summaries:
training_writer = tf.summary.FileWriter(logdir=os.path.join(summaries_dir, summaries_name),
graph=self.sess.graph)
if len(metrics) > 0:
evaluation_writer = tf.summary.FileWriter(logdir=os.path.join(summaries_dir, summaries_name+'_eval'))
for epoch in range(1, epochs+1):
##############################################################
# Run the training for this epoch.
##############################################################
loss_history = deque(maxlen=training_loss_display_averaging)
tr = trange(steps_per_epoch, file=sys.stdout)
tr.set_description('Epoch {}/{}'.format(epoch, epochs))
for train_step in tr:
batch_images, batch_labels = next(train_generator)
if record_summaries and (self.g_step % summaries_frequency == 0):
_, current_loss, self.g_step, training_summary = self.sess.run([self.train_op,
self.total_loss,
self.global_step,
self.summaries_training],
feed_dict={self.image_input: batch_images,
self.labels: batch_labels,
self.learning_rate: learning_rate,
self.keep_prob: keep_prob,
self.l2_regularization_rate: l2_regularization})
training_writer.add_summary(summary=training_summary, global_step=self.g_step)
else:
_, current_loss, self.g_step = self.sess.run([self.train_op,
self.total_loss,
self.global_step],
feed_dict={self.image_input: batch_images,
self.labels: batch_labels,
self.learning_rate: learning_rate,
self.keep_prob: keep_prob,
self.l2_regularization_rate: l2_regularization})
self.variables_updated = True
loss_history.append(current_loss)
losses = np.array(loss_history)
self.training_loss = np.mean(losses)
tr.set_postfix(ordered_dict={'loss': self.training_loss,
'learning rate': learning_rate})
learning_rate = learning_rate_schedule(self.g_step)
##############################################################
# Maybe evaluate the model after this epoch.
##############################################################
if (len(metrics) > 0) and (epoch % eval_frequency == 0):
if eval_dataset == 'train':
data_generator = train_generator
num_batches = steps_per_epoch
description = 'Evaluation on training dataset'
elif eval_dataset == 'val':
data_generator = val_generator
num_batches = val_steps
description = 'Evaluation on validation dataset'
self._evaluate(data_generator=data_generator,
metrics=metrics,
num_batches=num_batches,
l2_regularization=l2_regularization,
description=description)
if record_summaries:
evaluation_summary = self.sess.run(self.summaries_evaluation)
evaluation_writer.add_summary(summary=evaluation_summary, global_step=self.g_step)
##############################################################
# Maybe save the model after this epoch.
##############################################################
if save_during_training and (epoch % save_frequency == 0):
save = False
if save_best_only:
if (monitor == 'loss' and
(not 'loss' in self.metric_names) and
self.training_loss < self.best_training_loss):
save = True
else:
i = self.metric_names.index(monitor)
if (monitor == 'loss') and (self.metric_values[i] < self.best_metric_values[i]):
save = True
elif (monitor in ['accuracry', 'mean_iou']) and (self.metric_values[i] > self.best_metric_values[i]):
save = True
if save:
print('New best {} value, saving model.'.format(monitor))
else:
print('No improvement over previous best {} value, not saving model.'.format(monitor))
else:
save = True
if save:
self.save(model_save_dir=save_dir,
saver=saver,
tags=save_tags,
name=save_name,
include_global_step=True,
include_last_training_loss=True,
include_metrics=(len(self.metric_names) > 0))
##############################################################
# Update the current best metric values.
##############################################################
if self.training_loss < self.best_training_loss:
self.best_training_loss = self.training_loss
if epoch % eval_frequency == 0:
for i, metric_name in enumerate(self.metric_names):
if (metric_name == 'loss') and (self.metric_values[i] < self.best_metric_values[i]):
self.best_metric_values[i] = self.metric_values[i]
elif (metric_name in ['accuracry', 'mean_iou']) and (self.metric_values[i] > self.best_metric_values[i]):
self.best_metric_values[i] = self.metric_values[i]
def _evaluate(self, data_generator, metrics, num_batches, l2_regularization, description='Running evaluation'):
'''
Internal method used by both `evaluate()` and `train()` that performs
the actual evaluation. For the first three arguments, please refer
to the documentation of the public `evaluate()` method.
Arguments:
description (string, optional): A description string that will be prepended
to the progress bar while the evaluation is being processed. During
training, this description is used to clarify whether the evaluation
is being performed on the training or validation dataset.
'''
# Reset all metrics' accumulator variables.
self.sess.run(self.metrics_reset_op)
# Set up the progress bar.
tr = trange(num_batches, file=sys.stdout)
tr.set_description(description)
# Accumulate metrics in batches.
for step in tr:
batch_images, batch_labels = next(data_generator)
self.sess.run(self.metric_update_ops,
feed_dict={self.image_input: batch_images,
self.labels: batch_labels,
self.keep_prob: 1.0,
self.l2_regularization_rate: l2_regularization})
# Compute final metric values.
self.metric_values = self.sess.run(self.metric_value_tensors)
evaluation_results_string = ''
for i, metric_name in enumerate(self.metric_names):
evaluation_results_string += metric_name + ': {:.4f} '.format(self.metric_values[i])
print(evaluation_results_string)
def evaluate(self, data_generator, num_batches, metrics={'loss', 'mean_iou', 'accuracy'}, l2_regularization=0.0, dataset='val'):
'''
Evaluates the model on the given metrics on the data generated by `data_generator`.
Arguments:
data_generator (generator): A generator that yields batches of images
and associated ground truth images in two separate Numpy arrays.
The images must be a 4D array with format `(batch_size, height, width, channels)`
and the ground truth images must be a 4D array with format
`(batch_size, height, width, num_classes)`, i.e. the ground truth
data must be provided in one-hot format. The generator's batch size
has no effect on the outcome of the evaluation.
num_batches (int): The number of batches to evaluate the model on.
Typically this will be the number of batches such that the model
is being evaluated on the whole evaluation dataset.
metrics (set, optional): The metrics to be evaluated. A Python set containing
any subset of `{'loss', 'mean_iou', 'accuracy'}`, which are the
currently available metrics. Defaults to the full set.
dataset (string, optional): Specifies the kind of dataset on which the model
is being evaluated. Should be set to 'train' if the model is being evaluated
on a dataset on which it has also been trained, or 'val' if the model is
being evaluated on a dataset which it has never seen during training.
This argument has no effect on the evaluation of the model, but if you
save the model using `save()` after evaluating it, the model name will
include this value to indicate whether or not the metric values were
achieved on a dataset that has not been used during training. Defaults to 'val'.
'''
for metric in metrics:
if not metric in ['loss', 'mean_iou', 'accuracy']:
raise ValueError("{} is not a valid metric. Valid metrics are ['loss', mean_iou', 'accuracy']".format(metric))
if not dataset in {'train', 'val'}:
raise ValueError("`dataset` must be either 'train' or 'val'.")
self._initialize_metrics(metrics)
self._evaluate(data_generator, metrics, num_batches, l2_regularization, description='Running evaluation')
if dataset == 'val':
self.eval_dataset = 'val'
else:
self.eval_dataset = 'train'
def predict(self, images, argmax=True):
'''
Makes predictions for the input images.
Arguments:
images (array-like): The input image or images. Must be an array-like
object of rank 4. If predicting only one image, encapsulate it in
a Python list.
argmax (bool, optional): If `True`, the model predicts class IDs,
i.e. the last dimension has length 1 and an integer between
zero and `num_classes - 1` for each pixel. Otherwise, the model
outputs the softmax distribution, i.e. the last dimension has
length `num_classes` and contains the probability for each class
for all pixels. Defaults to `True`.
Returns:
The prediction, an array of rank 4 of which the first three dimensions
are identical to the input and the fourth dimension is as described
in `argmax`.
'''
if argmax:
return self.sess.run(self.predictions_argmax,
feed_dict={self.image_input: images,
self.keep_prob: 1.0})
else:
return self.sess.run(self.softmax_output,
feed_dict={self.image_input: images,
self.keep_prob: 1.0})
def predict_and_save(self,
results_dir,
images_dir,
color_map,
resize=False,
image_file_extension='png',
include_unprocessed_image=False,
arrangement='vertical',
overwrite_existing=True):
'''
Makes predictions for all images in a given directory, overlays a copy of the
input images with the respective predictions, and saves the resulting images to disk.
Arguments:
results_dir (string): The directory in which to save the annotated prediction
output images.
images_dir (string): The directory in which the images to be processed are located.
color_map (dictionary): A Python dictionary whose keys are non-negative
integers representing segmentation classes and whose values are 1D tuples
(or lists, Numpy arrays) of length 4 that represent the RGBA color values
in which the respective classes are to be annotated. For example, if the
dictionary contains the key-value pair `{1: (0, 255, 0, 127)}`, then
this means that all pixels in the predicted image segmentation that belong
to segmentation class 1 will be colored in green with 50% transparency
in the input image.
resize (tuple): `False` or a tuple of the form `(image_height, image_width)` that
represents the size to which all images will be resized.
image_file_extension (string, optional): The file extension of the
images in the datasets. Must be identical for all images in all
datasets in `datasets`. Defaults to `png`.
include_unprocessed_image (bool, optional): If `True`, creates split view images
containing both the input image and the overlayed segmented image.
Defaults to `False`.
arrangement (string, optional): Only relevant if `include_unprocessed_image` is `True`.
Determines the arrangement for the split view. Can be either of 'vertical', meaning
the processed and unprocessed images will be above each other, or 'horizontal',
meaning the processed and unprocessed images will be next to each other.
Defaults to 'vertical'.
overwrite_existing (bool, optional): If `True`, overwrites the output directory
in case it already exists.
'''
# Make a directory in which to store the results.
if overwrite_existing and os.path.exists(results_dir):
shutil.rmtree(results_dir)
os.makedirs(results_dir)
image_paths = glob(os.path.join(images_dir, '*.' + image_file_extension))
num_images = len(image_paths)
print('The segmented images will be saved to "{}"'.format(results_dir))
tr = trange(num_images, file=sys.stdout)
tr.set_description('Processing images')
for i in tr:
filepath = image_paths[i]
image = scipy.misc.imread(filepath)
if resize and not np.array_equal(image.shape[:2], resize):
image = scipy.misc.imresize(image, resize)
img_height, img_width, img_ch = image.shape
prediction = self.predict([image], argmax=False)
processed_image = np.asarray(print_segmentation_onto_image(image=image, prediction=prediction, color_map=color_map), dtype=np.uint8)
if include_unprocessed_image:
if arrangement == 'vertical':
output_width = img_width
output_height = 2 * img_height
processed_image = create_split_view(target_size=(output_height, output_width),
images=[processed_image, image],
positions=[(0, 0), (img_height, 0)],
sizes=[(img_height, img_width), (img_height, img_width)])
else:
output_width = 2 * img_width
output_height = img_height
processed_image = create_split_view(target_size=(output_height, output_width),
images=[processed_image, image],
positions=[(0, 0), (0, img_width)],
sizes=[(img_height, img_width), (img_height, img_width)])
scipy.misc.imsave(os.path.join(results_dir, os.path.basename(filepath)), processed_image)
def save(self,
model_save_dir,
saver,
tags=['default'],
name=None,
include_global_step=True,
include_last_training_loss=True,
include_metrics=True,
force_save=False):
'''
Saves the model to disk.
Arguments:
model_save_dir (string): The full path of the directory to which to
save the model.
saver (string, optional): Which saver to use when saving the model during training.
Can be either of 'saved_model' in order to use `tf.saved_model` or 'train_saver'
in order to use `tf.train.Saver`. Defaults to `tf.saved_model`. Check the
TensorFlow documentation for details on which saver might be better for your
use case. In general you can't go wrong with either of the two.
tags (list, optional): An optional list of tags to save the model metagraph
with in the SavedModel protocol buffer. Defaults to a list only containing
the tag 'default'. At least one tag must be given.
name (string, optional): An optional name that will be part of the name of the
saved model's parent directory. Since you have the possibility to include
the global step number and the values of metrics in the model name, giving
an explicit name here is often not necessary.
include_global_step (bool, optional): Whether or not to include the global
step number in the model name. Defaults to `True`.
include_last_training_loss (bool, optional): Whether of not to include the
last training loss value in the model name. Defaults to `True`.
include_metrics (bool, optional): If `True`, the last values of all recorded
metrics will be included in the model name. Defaults to `True`.
force_save (bool, optional): If `True`, force the saver to save the model
even if no variables have changed since saving last. Defaults to `False`.
'''
if (not self.variables_updated) and (not force_save):
print("Abort: Nothing to save, no training has been performed since the model was last saved.")
return
if not saver in {'saved_model', 'train_saver'}:
raise ValueError("Unexpected value for `saver`: Can be either 'saved_model' or 'train_saver', but received '{}'.".format(saver))
if self.training_loss is None:
include_last_training_loss = False
model_name = 'saved_model'
if not name is None:
model_name += '_' + name
if include_global_step:
self.g_step = self.sess.run(self.global_step)
model_name += '_(globalstep-{})'.format(self.g_step)
if include_last_training_loss:
model_name += '_(trainloss-{:.4f})'.format(self.training_loss)
if include_metrics:
if self.eval_dataset == 'val':
model_name += '_(eval_on_val_dataset)'
else:
model_name += '_(eval_on_train_dataset)'
for i in range(len(self.metric_names)):
model_name += '_({}-{:.4f})'.format(self.metric_names[i], self.metric_values[i])
if not (include_global_step or include_last_training_loss or include_metrics) and (name is None):
model_name += '_{}'.format(time.time())
if saver == 'saved_model':
saved_model_builder = tf.saved_model.builder.SavedModelBuilder(os.path.join(model_save_dir, model_name))
saved_model_builder.add_meta_graph_and_variables(sess=self.sess, tags=tags)
saved_model_builder.save()
else:
saver = tf.train.Saver(var_list=None,
reshape=False,
max_to_keep=5,
keep_checkpoint_every_n_hours=10000.0)
saver.save(self.sess,
save_path=os.path.join(model_save_dir, model_name, 'variables'),
write_meta_graph=True,
write_state=True)
self.variables_updated = False
def load_variables(self, path):
'''
Load variable values into the current model. Only works for variables that
were saved with 'train_saver'. See `save()` for details.
'''
saver = tf.train.Saver(var_list=None)
saver.restore(self.sess, path)
def close(self):
'''
Closes the session. This method is important to call when you are done working
with the model in order to release the resources it occupies.
'''
self.sess.close()
print("The session has been closed.")