We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
530 result = self._slow_forward(*input, **kwargs) 531 else: --> 532 result = self.forward(*input, **kwargs) 533 for hook in self._forward_hooks.values(): 534 hook_result = hook(self, input, result)
~\Dropbox\Implement2020\Codes\DNNETSC\matic_pytorch.py in forward(self, sample, return_gp) 92 err = lcdata[:, 2] 93 # Gaussian process fit ---> 94 mu, R, reg_points = self.GP_fit_posterior(mjd, mag, err, P) 95 # Sampling layer 96 z = self.sample_from_posterior(mu, R)
~\Dropbox\Implement2020\Codes\DNNETSC\matic_pytorch.py in GP_fit_posterior(self, mjd, mag, err, P, end, jitter) 66 Ktx = self.stationary_kernel(mjd, reg_points, non_trainable_kparams) 67 Kxx = self.stationary_kernel(reg_points, reg_points, non_trainable_kparams) ---> 68 Ltt = torch.potrf(Ktt, upper=False) # Cholesky lower triangular 69 # posterior mean and covariance 70 tmp1 = torch.t(torch.trtrs(Ktx, Ltt, upper=False)[0])
AttributeError: module 'torch' has no attribute 'potrf
The text was updated successfully, but these errors were encountered:
No branches or pull requests
530 result = self._slow_forward(*input, **kwargs)
531 else:
--> 532 result = self.forward(*input, **kwargs)
533 for hook in self._forward_hooks.values():
534 hook_result = hook(self, input, result)
~\Dropbox\Implement2020\Codes\DNNETSC\matic_pytorch.py in forward(self, sample, return_gp)
92 err = lcdata[:, 2]
93 # Gaussian process fit
---> 94 mu, R, reg_points = self.GP_fit_posterior(mjd, mag, err, P)
95 # Sampling layer
96 z = self.sample_from_posterior(mu, R)
~\Dropbox\Implement2020\Codes\DNNETSC\matic_pytorch.py in GP_fit_posterior(self, mjd, mag, err, P, end, jitter)
66 Ktx = self.stationary_kernel(mjd, reg_points, non_trainable_kparams)
67 Kxx = self.stationary_kernel(reg_points, reg_points, non_trainable_kparams)
---> 68 Ltt = torch.potrf(Ktt, upper=False) # Cholesky lower triangular
69 # posterior mean and covariance
70 tmp1 = torch.t(torch.trtrs(Ktx, Ltt, upper=False)[0])
AttributeError: module 'torch' has no attribute 'potrf
The text was updated successfully, but these errors were encountered: