-
-
Notifications
You must be signed in to change notification settings - Fork 673
/
Copy pathimdb.py
75 lines (61 loc) · 2.42 KB
/
imdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy
import numpy as np
from tensorflow.keras import Sequential
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.datasets import imdb
from tensorflow.keras.layers import Dense, Dropout, Embedding, LSTM
from tensorflow.keras.preprocessing import sequence
from attention import Attention
def train_and_evaluate_model_on_imdb(add_attention=True):
numpy.random.seed(7)
# load the dataset but only keep the top n words, zero the rest
top_words = 5000
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=top_words)
# truncate and pad input sequences
max_review_length = 500
x_train = sequence.pad_sequences(x_train, maxlen=max_review_length)
x_test = sequence.pad_sequences(x_test, maxlen=max_review_length)
# create the model
embedding_vector_length = 32
model = Sequential([
Embedding(top_words, embedding_vector_length, input_length=max_review_length),
Dropout(0.5),
# attention vs no attention. same number of parameters so fair comparison.
*([LSTM(100, return_sequences=True), Attention()] if add_attention
else [LSTM(100), Dense(350, activation='relu')]),
Dropout(0.5),
Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
class RecordBestTestAccuracy(Callback):
def __init__(self):
super().__init__()
self.val_accuracies = []
self.val_losses = []
def on_epoch_end(self, epoch, logs=None):
self.val_accuracies.append(logs['val_accuracy'])
self.val_losses.append(logs['val_loss'])
record_callback = RecordBestTestAccuracy()
model.fit(
x_train, y_train,
verbose=2,
validation_data=(x_test, y_test),
epochs=10,
batch_size=64,
callbacks=[record_callback]
)
print(f"Max Test Accuracy: {100 * np.max(record_callback.val_accuracies):.2f} %")
print(f"Mean Test Accuracy: {100 * np.mean(record_callback.val_accuracies):.2f} %")
def main():
# Make sure to run on a GPU!
# 10 epochs.
# Max Test Accuracy: 88.02 %
# Mean Test Accuracy: 87.26 %
train_and_evaluate_model_on_imdb(add_attention=False)
# 10 epochs.
# Max Test Accuracy: 88.74 %
# Mean Test Accuracy: 88.00 %
train_and_evaluate_model_on_imdb(add_attention=True)
if __name__ == '__main__':
main()