-
-
Notifications
You must be signed in to change notification settings - Fork 673
/
Copy pathexample-attention.py
41 lines (32 loc) · 1.33 KB
/
example-attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
from tensorflow.keras import Input
from tensorflow.keras.layers import Dense, LSTM
from tensorflow.keras.models import load_model, Model
from attention import Attention
def run_test(data_x, data_y, time_steps, input_dim, score):
# Define/compile the model.
model_input = Input(shape=(time_steps, input_dim))
x = LSTM(64, return_sequences=True)(model_input)
x = Attention(units=32, score=score)(x)
x = Dense(1)(x)
model = Model(model_input, x)
model.compile(loss='mae', optimizer='adam')
model.summary()
# train.
model.fit(data_x, data_y, epochs=30)
# test save/reload model.
pred1 = model.predict(data_x)
model.save('test_model.h5')
model_h5 = load_model('test_model.h5', custom_objects={'Attention': Attention})
pred2 = model_h5.predict(data_x)
np.testing.assert_almost_equal(pred1, pred2)
print('Success.')
def main():
# Dummy data. There is nothing to learn in this example.
num_samples, time_steps, input_dim, output_dim = 100, 10, 1, 1
data_x = np.random.uniform(size=(num_samples, time_steps, input_dim))
data_y = np.random.uniform(size=(num_samples, output_dim))
run_test(data_x, data_y, time_steps, input_dim, score='luong')
run_test(data_x, data_y, time_steps, input_dim, score='bahdanau')
if __name__ == '__main__':
main()