Skip to content

Commit 98646d6

Browse files
committed
N2HDM + CP in the Dark + Fixes for R2HDM + C2HDM
1 parent 4a10596 commit 98646d6

File tree

5 files changed

+108
-8
lines changed

5 files changed

+108
-8
lines changed

Diff for: docs/index.rst

+3-1
Original file line numberDiff line numberDiff line change
@@ -52,8 +52,10 @@ BSMPT - Beyond the Standard Model Phase Transitions documentation
5252
:maxdepth: 1
5353
:caption: Models
5454

55-
models/r2hdm
5655
models/c2hdm
56+
models/cp_in_the_dark
57+
models/r2hdm
58+
models/n2hdm
5759

5860
.. toctree::
5961
:maxdepth: 1

Diff for: docs/models/c2hdm.rst

+10-4
Original file line numberDiff line numberDiff line change
@@ -3,11 +3,12 @@
33
C2HDM
44
==============
55

6-
This implementation was based on [`2108.03580 <https://arxiv.org/abs/2108.03580>`_]. On the scalar sector there are two doublets
6+
This implementation was based on [`2108.03580 <https://arxiv.org/abs/2108.03580>`_].
77

8-
.. math::
9-
\Phi_{1}=\left(\begin{array}{c}{{\phi_{1}^{+}}}\\ {{\phi_{1}^{0}}}\end{array}\right) \text{ and } \Phi_{2}=\left(\begin{array}{c}{{\phi_{2}^{+}}}\\ {{\phi_{2}^{0}}}\end{array}\right).
8+
On the scalar sector there are two doublets
109

10+
.. math::
11+
\Phi_1=\frac{1}{\sqrt{2}}\binom{\rho_1+\mathrm{i} \eta_1}{\zeta_1+\omega_1+\mathrm{i} \psi_1}, \quad \Phi_2=\frac{1}{\sqrt{2}}\binom{\rho_2+\omega_{\mathrm{CB}}+\mathrm{i} \eta_2}{\zeta_2+\omega_2+\mathrm{i}\left(\psi_2+\omega_{\mathrm{CP}}\right)}
1112
where we impose a softly-broken :math:`\mathbb{Z}_2` which takes
1213

1314
.. math::
@@ -19,10 +20,15 @@ where we impose a softly-broken :math:`\mathbb{Z}_2` which takes
1920
The potential is given by
2021

2122
.. math::
22-
\begin{aligned}V_{\text {tree }}= & m_{11}^2 \Phi_1^{\dagger} \Phi_1+m_{22}^2 \Phi_2^{\dagger} \Phi_2-\left[m_{12}^2 \Phi_1^{\dagger} \Phi_2+\text { h.c. }\right]+\frac{1}{2} \lambda_1\left(\Phi_1^{\dagger} \Phi_1\right)^2+\frac{1}{2} \lambda_2\left(\Phi_2^{\dagger} \Phi_2\right)^2 \\& +\lambda_3\left(\Phi_1^{\dagger} \Phi_1\right)\left(\Phi_2^{\dagger} \Phi_2\right)+\lambda_4\left(\Phi_1^{\dagger} \Phi_2\right)\left(\Phi_2^{\dagger} \Phi_1\right)+\left[\frac{1}{2} \lambda_5\left(\Phi_1^{\dagger} \Phi_2\right)^2+\text { h.c. }\right] .\end{aligned}
23+
\begin{aligned}V_{\text {C2HDM}}= & m_{11}^2 \Phi_1^{\dagger} \Phi_1+m_{22}^2 \Phi_2^{\dagger} \Phi_2-\left[m_{12}^2 \Phi_1^{\dagger} \Phi_2+\text { h.c. }\right]+\frac{1}{2} \lambda_1\left(\Phi_1^{\dagger} \Phi_1\right)^2+\frac{1}{2} \lambda_2\left(\Phi_2^{\dagger} \Phi_2\right)^2 \\& +\lambda_3\left(\Phi_1^{\dagger} \Phi_1\right)\left(\Phi_2^{\dagger} \Phi_2\right)+\lambda_4\left(\Phi_1^{\dagger} \Phi_2\right)\left(\Phi_2^{\dagger} \Phi_1\right)+\left[\frac{1}{2} \lambda_5\left(\Phi_1^{\dagger} \Phi_2\right)^2+\text { h.c. }\right] .\end{aligned}
2324
2425
where all coupling constants are real except :math:`m_{12}` and :math:`\lambda_5` which, if non-real, explicitly break CP in the model at :math:`T = 0`.
2526

27+
The :math:`T=0` vacuum is chosen to be
28+
29+
.. math::
30+
\left.\left\langle\Phi_1\right\rangle\right|_{T=0}=\frac{1}{\sqrt{2}}\binom{0}{v_1},\left.\quad\left\langle\Phi_2\right\rangle\right|_{T=0}=\frac{1}{\sqrt{2}}\binom{0}{v_2}\,.
31+
2632
The Yukawa types defined by
2733
* Type I : :math:`\Phi_d = \Phi_l = \Phi_2`
2834
* Type II: :math:`\Phi_d = \Phi_l = \Phi_1`

Diff for: docs/models/cp_in_the_dark.rst

+38
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
.. _cp_in_the_dark:
2+
3+
CP in the dark
4+
==============
5+
6+
This implementation was based on [`1807.10322 <https://arxiv.org/abs/1807.10322>`_] and [`2204.13425 <https://arxiv.org/abs/2204.13425>`_].
7+
8+
On the scalar sector there are two doublets
9+
10+
.. math::
11+
\Phi_1=\frac{1}{\sqrt{2}}\binom{\rho_1+\mathrm{i} \eta_1}{\zeta_1+\omega_1+\mathrm{i} \psi_1}, \quad \Phi_2=\frac{1}{\sqrt{2}}\binom{\rho_2+\omega_{\mathrm{CB}}+\mathrm{i} \eta_2}{\zeta_2+\omega_2+\mathrm{i}\left(\psi_2+\omega_{\mathrm{CP}}\right)}, \quad \Phi_S=\zeta_3+\omega_S
12+
13+
where we impose a softly-broken :math:`\mathbb{Z}_2` symmetry which takes
14+
15+
.. math::
16+
\begin{align}
17+
\Phi_{1} &\to -\Phi_{1}\,,\\
18+
\Phi_{2} &\to \Phi_{2}\,,\\
19+
\Phi_S &\to -\Phi_S\,,
20+
\end{align}
21+
22+
The potential is given by
23+
24+
.. math::
25+
\begin{aligned}V_\text{CP in the Dark} &= m_{11}^2\left|\Phi_1\right|^2+m_{22}^2\left|\Phi_2\right|^2+\frac{1}{2} m_S^2 \Phi_S^2+\left(A \Phi_1^{\dagger} \Phi_2 \Phi_S+\text { h.c. }\right) \\& +\frac{1}{2} \lambda_1\left|\Phi_1\right|^4+\frac{1}{2} \lambda_2\left|\Phi_2\right|^4+\lambda_3\left|\Phi_1\right|^2\left|\Phi_2\right|^2+\lambda_4\left|\Phi_1^{\dagger} \Phi_2\right|^2+\frac{1}{2} \lambda_5\left[\left(\Phi_1^{\dagger} \Phi_2\right)^2+\text { h.c. }\right] \\& +\frac{1}{4} \lambda_6 \Phi_S^4+\frac{1}{2} \lambda_7\left|\Phi_1\right|^2 \Phi_S^2+\frac{1}{2} \lambda_8\left|\Phi_2\right|^2 \Phi_S^2,\end{aligned}
26+
27+
where all coupling constants are real except :math:`A`, whose complex phase is directly linked with CP violation.
28+
29+
The :math:`T=0` vacuum is chosen to be
30+
31+
.. math::
32+
\left.\left\langle\Phi_1\right\rangle\right|_{T=0}=\frac{1}{\sqrt{2}}\binom{0}{v_1},\left.\quad\left\langle\Phi_2\right\rangle\right|_{T=0}=\frac{1}{\sqrt{2}}\binom{0}{v_2},\left.\quad\langle S\rangle\right|_{T=0}=v_S
33+
34+
The Yukawa types defined by
35+
* Type I : :math:`\Phi_d = \Phi_l = \Phi_2`
36+
* Type II: :math:`\Phi_d = \Phi_l = \Phi_1`
37+
* Type LS(=3): :math:`\Phi_d = \Phi_2\,, \Phi_l = \Phi_1`
38+
* Type FL(=4): :math:`\Phi_d = \Phi_1 \,,\Phi_l = \Phi_2`

Diff for: docs/models/n2hdm.rst

+47
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,47 @@
1+
.. _n2hdm:
2+
3+
N2HDM
4+
==============
5+
6+
This implementation was based on [`1612.01309 <https://arxiv.org/abs/1612.01309>`_] and [`1912.10477 <https://arxiv.org/abs/1912.10477>`_].
7+
8+
On the scalar sector there are two doublets
9+
10+
.. math::
11+
\Phi_1=\frac{1}{\sqrt{2}}\binom{\rho_1+\mathrm{i} \eta_1}{\zeta_1+\omega_1+\mathrm{i} \psi_1}, \quad \Phi_2=\frac{1}{\sqrt{2}}\binom{\rho_2+\omega_{\mathrm{CB}}+\mathrm{i} \eta_2}{\zeta_2+\omega_2+\mathrm{i}\left(\psi_2+\omega_{\mathrm{CP}}\right)}, \quad \Phi_S=\zeta_3+\omega_S
12+
13+
where we impose two softly-broken :math:`\mathbb{Z}_2` symmetries. One :math:`\mathbb{Z}_2` which takes
14+
15+
.. math::
16+
\begin{align}
17+
\Phi_{1} &\to -\Phi_{1}\,,\\
18+
\Phi_{2} &\to \Phi_{2}\,,\\
19+
\Phi_S &\to \Phi_S\,,
20+
\end{align}
21+
22+
and another :math:`\mathbb{Z}_2` which takes
23+
24+
.. math::
25+
\begin{align}
26+
\Phi_{1} &\to \Phi_{1}\,,\\
27+
\Phi_{2} &\to \Phi_{2}\,,\\
28+
\Phi_S &\to -\Phi_S\,.
29+
\end{align}
30+
31+
The potential is given by
32+
33+
.. math::
34+
\begin{aligned}V_{\mathrm{N} 2 \mathrm{HDM}}= & m_{11}^2 \Phi_1^{\dagger} \Phi_1+m_{22}^2 \Phi_2^{\dagger} \Phi_2-m_{12}^2\left(\Phi_1^{\dagger} \Phi_2+\text { h.c. }\right)+\frac{\lambda_1}{2}\left(\Phi_1^{\dagger} \Phi_1\right)^2+\frac{\lambda_2}{2}\left(\Phi_2^{\dagger} \Phi_2\right)^2 \\& +\lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2+\lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1+\frac{\lambda_5}{2}\left(\left(\Phi_1^{\dagger} \Phi_2\right)^2+\text { h.c. }\right) \\& +\frac{1}{2} m_S^2 \Phi_S^2+\frac{\lambda_6}{8} \Phi_S^4+\lambda_7\left(\Phi_1^{\dagger} \Phi_1\right) \Phi_S^2+\lambda_8\left(\Phi_2^{\dagger} \Phi_2\right) \Phi_S^2,\end{aligned}
35+
36+
where all coupling constants are real to preserve CP in the model at :math:`T = 0`.
37+
38+
The :math:`T=0` vacuum is chosen to be
39+
40+
.. math::
41+
\left.\left\langle\Phi_1\right\rangle\right|_{T=0}=\frac{1}{\sqrt{2}}\binom{0}{v_1},\left.\quad\left\langle\Phi_2\right\rangle\right|_{T=0}=\frac{1}{\sqrt{2}}\binom{0}{v_2},\left.\quad\langle S\rangle\right|_{T=0}=v_S
42+
43+
The Yukawa types defined by
44+
* Type I : :math:`\Phi_d = \Phi_l = \Phi_2`
45+
* Type II: :math:`\Phi_d = \Phi_l = \Phi_1`
46+
* Type LS(=3): :math:`\Phi_d = \Phi_2\,, \Phi_l = \Phi_1`
47+
* Type FL(=4): :math:`\Phi_d = \Phi_1 \,,\Phi_l = \Phi_2`

Diff for: docs/models/r2hdm.rst

+10-3
Original file line numberDiff line numberDiff line change
@@ -3,10 +3,12 @@
33
R2HDM
44
==============
55

6-
This implementation was based on [`1612.04086 <https://arxiv.org/abs/1612.04086>`_]. On the scalar sector there are two doublets
6+
This implementation was based on [`1612.04086 <https://arxiv.org/abs/1612.04086>`_].
7+
8+
On the scalar sector there are two doublets
79

810
.. math::
9-
\Phi_{1}=\left(\begin{array}{c}{{\phi_{1}^{+}}}\\ {{\phi_{1}^{0}}}\end{array}\right) \text{ and } \Phi_{2}=\left(\begin{array}{c}{{\phi_{2}^{+}}}\\ {{\phi_{2}^{0}}}\end{array}\right).
11+
\Phi_1=\frac{1}{\sqrt{2}}\binom{\rho_1+\mathrm{i} \eta_1}{\zeta_1+\omega_1+\mathrm{i} \psi_1}, \quad \Phi_2=\frac{1}{\sqrt{2}}\binom{\rho_2+\omega_{\mathrm{CB}}+\mathrm{i} \eta_2}{\zeta_2+\omega_2+\mathrm{i}\left(\psi_2+\omega_{\mathrm{CP}}\right)}
1012
1113
where we impose a softly-broken :math:`\mathbb{Z}_2` which takes
1214

@@ -19,10 +21,15 @@ where we impose a softly-broken :math:`\mathbb{Z}_2` which takes
1921
The potential is given by
2022

2123
.. math::
22-
\begin{aligned}V_{\text {tree }}= & m_{11}^2 \Phi_1^{\dagger} \Phi_1+m_{22}^2 \Phi_2^{\dagger} \Phi_2-\left[m_{12}^2 \Phi_1^{\dagger} \Phi_2+\text { h.c. }\right]+\frac{1}{2} \lambda_1\left(\Phi_1^{\dagger} \Phi_1\right)^2+\frac{1}{2} \lambda_2\left(\Phi_2^{\dagger} \Phi_2\right)^2 \\& +\lambda_3\left(\Phi_1^{\dagger} \Phi_1\right)\left(\Phi_2^{\dagger} \Phi_2\right)+\lambda_4\left(\Phi_1^{\dagger} \Phi_2\right)\left(\Phi_2^{\dagger} \Phi_1\right)+\left[\frac{1}{2} \lambda_5\left(\Phi_1^{\dagger} \Phi_2\right)^2+\text { h.c. }\right] .\end{aligned}
24+
\begin{aligned}V_{\text {R2HDM}}= & m_{11}^2 \Phi_1^{\dagger} \Phi_1+m_{22}^2 \Phi_2^{\dagger} \Phi_2-\left[m_{12}^2 \Phi_1^{\dagger} \Phi_2+\text { h.c. }\right]+\frac{1}{2} \lambda_1\left(\Phi_1^{\dagger} \Phi_1\right)^2+\frac{1}{2} \lambda_2\left(\Phi_2^{\dagger} \Phi_2\right)^2 \\& +\lambda_3\left(\Phi_1^{\dagger} \Phi_1\right)\left(\Phi_2^{\dagger} \Phi_2\right)+\lambda_4\left(\Phi_1^{\dagger} \Phi_2\right)\left(\Phi_2^{\dagger} \Phi_1\right)+\left[\frac{1}{2} \lambda_5\left(\Phi_1^{\dagger} \Phi_2\right)^2+\text { h.c. }\right] .\end{aligned}
2325
2426
where all coupling constants are real. :math:`m_{12}` and :math:`\lambda_5` could, in principle, be complex but are set to real to that there is no explicit CP violation in the model at :math:`T = 0`.
2527

28+
The :math:`T=0` vacuum is chosen to be
29+
30+
.. math::
31+
\left.\left\langle\Phi_1\right\rangle\right|_{T=0}=\frac{1}{\sqrt{2}}\binom{0}{v_1},\left.\quad\left\langle\Phi_2\right\rangle\right|_{T=0}=\frac{1}{\sqrt{2}}\binom{0}{v_2}\,.
32+
2633
The Yukawa types defined by
2734
* Type I : :math:`\Phi_d = \Phi_l = \Phi_2`
2835
* Type II: :math:`\Phi_d = \Phi_l = \Phi_1`

0 commit comments

Comments
 (0)