-
Notifications
You must be signed in to change notification settings - Fork 157
/
train_categorical_dqn_gym.py
175 lines (152 loc) · 5.88 KB
/
train_categorical_dqn_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""An example of training Categorical DQN against OpenAI Gym Envs.
This script is an example of training a CategoricalDQN agent against OpenAI
Gym envs. Only discrete spaces are supported.
To solve CartPole-v0, run:
python train_categorical_dqn_gym.py --env CartPole-v0
"""
import argparse
import sys
import gym
import torch
import pfrl
from pfrl import experiments, explorers, q_functions, replay_buffers, utils
def main():
import logging
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument("--env", type=str, default="CartPole-v1")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--final-exploration-steps", type=int, default=1000)
parser.add_argument("--start-epsilon", type=float, default=1.0)
parser.add_argument("--end-epsilon", type=float, default=0.1)
parser.add_argument("--demo", action="store_true", default=False)
parser.add_argument("--load", type=str, default=None)
parser.add_argument("--steps", type=int, default=10**8)
parser.add_argument("--prioritized-replay", action="store_true")
parser.add_argument("--replay-start-size", type=int, default=50)
parser.add_argument("--target-update-interval", type=int, default=100)
parser.add_argument("--target-update-method", type=str, default="hard")
parser.add_argument("--soft-update-tau", type=float, default=1e-2)
parser.add_argument("--update-interval", type=int, default=1)
parser.add_argument("--eval-n-runs", type=int, default=100)
parser.add_argument("--eval-interval", type=int, default=1000)
parser.add_argument("--n-hidden-channels", type=int, default=12)
parser.add_argument("--n-hidden-layers", type=int, default=3)
parser.add_argument("--gamma", type=float, default=0.95)
parser.add_argument("--minibatch-size", type=int, default=None)
parser.add_argument("--render-train", action="store_true")
parser.add_argument("--render-eval", action="store_true")
parser.add_argument("--monitor", action="store_true")
parser.add_argument("--reward-scale-factor", type=float, default=1.0)
args = parser.parse_args()
# Set a random seed used in PFRL
utils.set_random_seed(args.seed)
args.outdir = experiments.prepare_output_dir(args, args.outdir, argv=sys.argv)
print("Output files are saved in {}".format(args.outdir))
def make_env(test):
env = gym.make(args.env)
env_seed = 2**32 - 1 - args.seed if test else args.seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = pfrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = pfrl.wrappers.Monitor(env, args.outdir)
if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = pfrl.wrappers.ScaleReward(env, args.reward_scale_factor)
if (args.render_eval and test) or (args.render_train and not test):
env = pfrl.wrappers.Render(env)
return env
env = make_env(test=False)
timestep_limit = env.spec.max_episode_steps
obs_size = env.observation_space.low.size
action_space = env.action_space
n_atoms = 51
v_max = 500
v_min = 0
n_actions = action_space.n
q_func = q_functions.DistributionalFCStateQFunctionWithDiscreteAction(
obs_size,
n_actions,
n_atoms,
v_min,
v_max,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
)
# Use epsilon-greedy for exploration
explorer = explorers.LinearDecayEpsilonGreedy(
args.start_epsilon,
args.end_epsilon,
args.final_exploration_steps,
action_space.sample,
)
opt = torch.optim.Adam(q_func.parameters(), 1e-3)
rbuf_capacity = 50000 # 5 * 10 ** 5
if args.minibatch_size is None:
args.minibatch_size = 32
if args.prioritized_replay:
betasteps = (args.steps - args.replay_start_size) // args.update_interval
rbuf = replay_buffers.PrioritizedReplayBuffer(
rbuf_capacity, betasteps=betasteps
)
else:
rbuf = replay_buffers.ReplayBuffer(rbuf_capacity)
agent = pfrl.agents.CategoricalDQN(
q_func,
opt,
rbuf,
gpu=args.gpu,
gamma=args.gamma,
explorer=explorer,
replay_start_size=args.replay_start_size,
target_update_interval=args.target_update_interval,
update_interval=args.update_interval,
minibatch_size=args.minibatch_size,
target_update_method=args.target_update_method,
soft_update_tau=args.soft_update_tau,
)
if args.load:
agent.load(args.load)
eval_env = make_env(test=True)
if args.demo:
eval_stats = experiments.eval_performance(
env=eval_env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit,
)
print(
"n_runs: {} mean: {} median: {} stdev {}".format(
args.eval_n_runs,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
else:
experiments.train_agent_with_evaluation(
agent=agent,
env=env,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
outdir=args.outdir,
eval_env=eval_env,
train_max_episode_len=timestep_limit,
)
if __name__ == "__main__":
main()