Skip to content

Error when loading split released models for inference on custom data #20

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
ysig opened this issue Jun 26, 2020 · 3 comments
Closed

Error when loading split released models for inference on custom data #20

ysig opened this issue Jun 26, 2020 · 3 comments

Comments

@ysig
Copy link

ysig commented Jun 26, 2020

I get the following error wen I try to use the pretrained detectors found in releases (https://github.com/pedropro/TACO/releases/tag/1.0).

  File /TACO/detector/model.py", line 2235, in load_weights
     topology.load_weights_from_hdf5_group_by_name(f, layers)
   File "/miniconda3/envs/taco/lib/python3.6/site-packages/keras/engine/topology.py", line 3479, in load_weights_from_hdf5_group_by_name
     K.batch_set_value(weight_value_tuples)
   File "miniconda3/envs/taco/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2372, in batch_set_value
     assign_op = x.assign(assign_placeholder)
   File "miniconda3/envs/taco/lib/python3.6/site-packages/tensorflow/python/ops/variables.py", line 1762, in assign
     name=name)
   File "miniconda3/envs/taco/lib/python3.6/site-packages/tensorflow/python/ops/state_ops.py", line 223, in assign
     validate_shape=validate_shape)
   File "miniconda3/envs/taco/lib/python3.6/site-packages/tensorflow/python/ops/gen_state_ops.py", line 64, in assign
     use_locking=use_locking, name=name)
   File "miniconda3/envs/taco/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 788, in _apply_op_helper
     op_def=op_def)
   File "miniconda3/envs/taco/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
     return func(*args, **kwargs)
   File "miniconda3/envs/taco/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3300, in create_op
     op_def=op_def)
   File "miniconda3/envs/taco/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1823, in __init__
     control_input_ops)
   File "miniconda3/envs/taco/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1662, in _create_c_op
     raise ValueError(str(e))
 ValueError: Dimension 1 in both shapes must be equal, but are 256 and 44. Shapes are [1024,256] and [1024,44]. for 'Assign_376' (op: 'Assign') with input shapes: [1024,256], [1024,44].

I use keras 2.1.6 and tensorflow 1.13.1
My Config look like this:

Configurations:
BACKBONE                       resnet50
BACKBONE_STRIDES               [4, 8, 16, 32, 64]
BATCH_SIZE                     1
BBOX_STD_DEV                   [0.1 0.1 0.2 0.2]
DETECTION_CLASSLESS_NMS_THRESHOLD 0.9
DETECTION_MAX_INSTANCES        100
DETECTION_MIN_CONFIDENCE       0
DETECTION_NMS_THRESHOLD        0.3
DETECTION_SCORE_RATIO          True
GPU_COUNT                      1
GRADIENT_CLIP_NORM             5.0
IMAGES_PER_GPU                 1
IMAGE_MAX_DIM                  1024
IMAGE_META_SIZE                76
IMAGE_MIN_DIM                  800
IMAGE_MIN_SCALE                0
IMAGE_RESIZE_MODE              square
IMAGE_SHAPE                    [1024 1024    3]
LEARNING_MOMENTUM              0.9
LEARNING_RATE                  0.001
LOSS_WEIGHTS                   {'rpn_class_loss': 1.0, 'rpn_bbox_loss': 1.0, 'mrcnn_class_loss': 1.0, 'mrcnn_bbox_loss': 1.0, 'mrcnn_mask_loss': 1.0}
MASK_POOL_SIZE                 14
MASK_SHAPE                     [28, 28]
MASK_SHARE                     False
MAX_GT_INSTANCES               100
MEAN_PIXEL                     [123.7 116.8 103.9]
MINI_MASK_SHAPE                (512, 512)
NAME                           taco
NUM_CLASSES                    64
OPTIMIZER                      SGD
POOL_SIZE                      7
POST_NMS_ROIS_INFERENCE        1000
POST_NMS_ROIS_TRAINING         2000
ROI_POSITIVE_RATIO             0.33
RPN_ANCHOR_RATIOS              [0.5, 1, 2]
RPN_ANCHOR_SCALES              (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE              1
RPN_BBOX_STD_DEV               [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD              0.7
RPN_TRAIN_ANCHORS_PER_IMAGE    256
STEPS_PER_EPOCH                1000
TRAIN_BN                       False
TRAIN_ROIS_PER_IMAGE           200
USE_MINI_MASK                  False
USE_OBJECT_ZOOM                False
USE_RPN_ROIS                   True
VALIDATION_STEPS               50
WEIGHT_DECAY                   0.0001
ZOOM_IN_FREQ                   0.5

and I used --class_map=taco_config/map_10.csv for inference.

@ysig ysig changed the title Error when loading split models on custom data Error when loading split models for inference on custom data Jun 26, 2020
@ysig ysig changed the title Error when loading split models for inference on custom data Error when loading split released models for inference on custom data Jun 26, 2020
@alexweininger
Copy link

Same for me :(

@pedropro
Copy link
Owner

Duplicate of #17

@pedropro pedropro marked this as a duplicate of #17 Nov 15, 2020
@Michsh
Copy link

Michsh commented Jun 17, 2021

Error on testing after training.

`python3 detector.py test --dataset=../data --model=models/logs/taco20210617T0019/mask_rcnn_taco_0100.h5 --round 0 --class_map=./taco_config/my_map.csv

WARNING:tensorflow:From /home/TACO-master/detector/model.py:816: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Traceback (most recent call last):
File "detector.py", line 289, in
_, model_path = model.get_last_checkpoint(args.model)
File "/home/TACO-master/detector/model.py", line 2167, in get_last_checkpoint
assert model_name in dir_names
AssertionError
`

I have :
Python 3.6.9
Tensorflow 1.14.0
Keras 2.1.6

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants