-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgd_vs_svm_vs_lr.py
executable file
·39 lines (31 loc) · 1.8 KB
/
sgd_vs_svm_vs_lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from main import *
from sgd import sgd
from svm import svm
from log_reg import log_reg
import time
import pickle
import os
import pandas as pd
from plot_tools import sketch_distribution_3models
n_iter = 2
if not os.path.isfile("sgd_vs_svm_vs_lr_iter_%d.cPickle" % n_iter):
sgd_accuracy_list = []
svm_accuracy_list = []
logreg_accuracy_list = []
print("Generating accoracy values")
for i in range(n_iter):
print("Iteration", i)
X_train, X_valid, y_train, y_valid = train_test_split(train_data_clean, targets, train_size=0.8, test_size=0.2, shuffle=True)
var = sgd(max_df = 0.5, reset_train_test_split = True, X_train_arg = X_train, y_train_arg = y_train, X_valid_arg = X_valid, y_valid_arg = y_valid)
sgd_accuracy_list.append(var)
var = svm(max_df = 0.5, reset_train_test_split = True, X_train_arg = X_train, y_train_arg = y_train, X_valid_arg = X_valid, y_valid_arg = y_valid)
svm_accuracy_list.append(var)
var = log_reg(max_df = 0.5, reset_train_test_split = True, X_train_arg = X_train, y_train_arg = y_train, X_valid_arg = X_valid, y_valid_arg = y_valid)
logreg_accuracy_list.append(var)
pickle.dump((sgd_accuracy_list, svm_accuracy_list, logreg_accuracy_list), open("sgd_vs_svm_vs_lr_iter_%d.cPickle" % n_iter, 'wb'))
print("Saved to file\nsgd_vs_svm_vs_lr_iter_%d.cPickle" % n_iter)
else:
sgd_accuracy_list, svm_accuracy_list, logreg_accuracy_list = pickle.load(open("sgd_vs_svm_vs_lr_iter_%d.cPickle" % n_iter, 'rb'))
print("Read from file\nsgd_vs_svm_vs_lr_iter_%d.cPickle" % n_iter)
# sgd_time_list, svm_time_list, logreg_time_list = pickle.load(open("clf_time_iter_%d.cPickle" % n_iter, 'rb'))
sketch_distribution_3models(sgd_accuracy_list, svm_accuracy_list, logreg_accuracy_list, n_iter)