-
Notifications
You must be signed in to change notification settings - Fork 221
/
uint.rs
1823 lines (1564 loc) · 46.6 KB
/
uint.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2020 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Code derived from original work by Andrew Poelstra <[email protected]>
// Rust Bitcoin Library
// Written in 2014 by
// Andrew Poelstra <[email protected]>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Big unsigned integer types.
//!
//! Implementation of a various large-but-fixed sized unsigned integer types.
//! The functions here are designed to be fast. There are optional `x86_64`
//! implementations for even more speed, hidden behind the `x64_arithmetic`
//! feature flag.
use core::fmt;
/// A list of error categories encountered when parsing numbers.
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
#[non_exhaustive]
pub enum FromStrRadixErrKind {
/// A character in the input string is not valid for the given radix.
InvalidCharacter,
/// The input length is not valid for the given radix.
InvalidLength,
/// The given radix is not supported.
UnsupportedRadix,
}
#[derive(Debug)]
enum FromStrRadixErrSrc {
Hex(FromHexError),
Dec(FromDecStrErr),
}
impl fmt::Display for FromStrRadixErrSrc {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
FromStrRadixErrSrc::Dec(d) => write!(f, "{}", d),
FromStrRadixErrSrc::Hex(h) => write!(f, "{}", h),
}
}
}
/// The error type for parsing numbers from strings.
#[derive(Debug)]
pub struct FromStrRadixErr {
kind: FromStrRadixErrKind,
source: Option<FromStrRadixErrSrc>,
}
impl FromStrRadixErr {
#[doc(hidden)]
pub fn unsupported() -> Self {
Self { kind: FromStrRadixErrKind::UnsupportedRadix, source: None }
}
/// Returns the corresponding `FromStrRadixErrKind` for this error.
pub fn kind(&self) -> FromStrRadixErrKind {
self.kind
}
}
impl fmt::Display for FromStrRadixErr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(ref src) = self.source {
return write!(f, "{}", src);
}
match self.kind {
FromStrRadixErrKind::UnsupportedRadix => write!(f, "the given radix is not supported"),
FromStrRadixErrKind::InvalidCharacter => write!(f, "input contains an invalid character"),
FromStrRadixErrKind::InvalidLength => write!(f, "length not supported for radix or type"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for FromStrRadixErr {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self.source {
Some(FromStrRadixErrSrc::Dec(ref d)) => Some(d),
Some(FromStrRadixErrSrc::Hex(ref h)) => Some(h),
None => None,
}
}
}
impl From<FromDecStrErr> for FromStrRadixErr {
fn from(e: FromDecStrErr) -> Self {
let kind = match e {
FromDecStrErr::InvalidCharacter => FromStrRadixErrKind::InvalidCharacter,
FromDecStrErr::InvalidLength => FromStrRadixErrKind::InvalidLength,
};
Self { kind, source: Some(FromStrRadixErrSrc::Dec(e)) }
}
}
impl From<FromHexError> for FromStrRadixErr {
fn from(e: FromHexError) -> Self {
let kind = match e.inner {
hex::FromHexError::InvalidHexCharacter { .. } => FromStrRadixErrKind::InvalidCharacter,
hex::FromHexError::InvalidStringLength => FromStrRadixErrKind::InvalidLength,
hex::FromHexError::OddLength => FromStrRadixErrKind::InvalidLength,
};
Self { kind, source: Some(FromStrRadixErrSrc::Hex(e)) }
}
}
/// Conversion from decimal string error
#[derive(Debug, PartialEq, Eq)]
pub enum FromDecStrErr {
/// Char not from range 0-9
InvalidCharacter,
/// Value does not fit into type
InvalidLength,
}
impl fmt::Display for FromDecStrErr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"{}",
match self {
FromDecStrErr::InvalidCharacter => "a character is not in the range 0-9",
FromDecStrErr::InvalidLength => "the number is too large for the type",
}
)
}
}
#[cfg(feature = "std")]
impl std::error::Error for FromDecStrErr {}
#[derive(Debug)]
pub struct FromHexError {
inner: hex::FromHexError,
}
impl fmt::Display for FromHexError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.inner)
}
}
#[cfg(feature = "std")]
impl std::error::Error for FromHexError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
Some(&self.inner)
}
}
#[doc(hidden)]
impl From<hex::FromHexError> for FromHexError {
fn from(inner: hex::FromHexError) -> Self {
Self { inner }
}
}
#[macro_export]
#[doc(hidden)]
macro_rules! impl_map_from {
($thing:ident, $from:ty, $to:ty) => {
impl From<$from> for $thing {
fn from(value: $from) -> $thing {
From::from(value as $to)
}
}
};
}
#[macro_export]
#[doc(hidden)]
macro_rules! impl_try_from_for_primitive {
($from:ident, $to:ty) => {
impl $crate::core_::convert::TryFrom<$from> for $to {
type Error = &'static str;
#[inline]
fn try_from(u: $from) -> $crate::core_::result::Result<$to, &'static str> {
let $from(arr) = u;
if !u.fits_word() || arr[0] > <$to>::max_value() as u64 {
Err(concat!("integer overflow when casting to ", stringify!($to)))
} else {
Ok(arr[0] as $to)
}
}
}
};
}
#[macro_export]
#[doc(hidden)]
macro_rules! uint_overflowing_binop {
($name:ident, $n_words: tt, $self_expr: expr, $other: expr, $fn:expr) => {{
use $crate::core_ as core;
let $name(ref me) = $self_expr;
let $name(ref you) = $other;
let mut ret = [0u64; $n_words];
let mut carry = 0u64;
$crate::static_assertions::const_assert!(core::isize::MAX as usize / core::mem::size_of::<u64>() > $n_words);
// `unroll!` is recursive, but doesn’t use `$crate::unroll`, so we need to ensure that it
// is in scope unqualified.
use $crate::unroll;
unroll! {
for i in 0..$n_words {
use core::ptr;
if carry != 0 {
let (res1, overflow1) = ($fn)(me[i], you[i]);
let (res2, overflow2) = ($fn)(res1, carry);
ret[i] = res2;
carry = (overflow1 as u8 + overflow2 as u8) as u64;
} else {
let (res, overflow) = ($fn)(me[i], you[i]);
ret[i] = res;
carry = overflow as u64;
}
}
}
($name(ret), carry > 0)
}};
}
#[macro_export]
#[doc(hidden)]
macro_rules! uint_full_mul_reg {
($name:ident, 8, $self_expr:expr, $other:expr) => {
$crate::uint_full_mul_reg!($name, 8, $self_expr, $other, |a, b| a != 0 || b != 0);
};
($name:ident, $n_words:tt, $self_expr:expr, $other:expr) => {
$crate::uint_full_mul_reg!($name, $n_words, $self_expr, $other, |_, _| true);
};
($name:ident, $n_words:tt, $self_expr:expr, $other:expr, $check:expr) => {{
{
#![allow(unused_assignments)]
let $name(ref me) = $self_expr;
let $name(ref you) = $other;
let mut ret = [0u64; $n_words * 2];
use $crate::unroll;
unroll! {
for i in 0..$n_words {
let mut carry = 0u64;
let b = you[i];
unroll! {
for j in 0..$n_words {
if $check(me[j], carry) {
let a = me[j];
let (hi, low) = Self::split_u128(a as u128 * b as u128);
let overflow = {
let existing_low = &mut ret[i + j];
let (low, o) = low.overflowing_add(*existing_low);
*existing_low = low;
o
};
carry = {
let existing_hi = &mut ret[i + j + 1];
let hi = hi + overflow as u64;
let (hi, o0) = hi.overflowing_add(carry);
let (hi, o1) = hi.overflowing_add(*existing_hi);
*existing_hi = hi;
(o0 | o1) as u64
}
}
}
}
}
}
ret
}
}};
}
#[macro_export]
#[doc(hidden)]
macro_rules! uint_overflowing_mul {
($name:ident, $n_words: tt, $self_expr: expr, $other: expr) => {{
let ret: [u64; $n_words * 2] = $crate::uint_full_mul_reg!($name, $n_words, $self_expr, $other);
// The safety of this is enforced by the compiler
let ret: [[u64; $n_words]; 2] = unsafe { $crate::core_::mem::transmute(ret) };
// The compiler WILL NOT inline this if you remove this annotation.
#[inline(always)]
fn any_nonzero(arr: &[u64; $n_words]) -> bool {
use $crate::unroll;
unroll! {
for i in 0..$n_words {
if arr[i] != 0 {
return true;
}
}
}
false
}
($name(ret[0]), any_nonzero(&ret[1]))
}};
}
#[macro_export]
#[doc(hidden)]
macro_rules! overflowing {
($op: expr, $overflow: expr) => {{
let (overflow_x, overflow_overflow) = $op;
$overflow |= overflow_overflow;
overflow_x
}};
($op: expr) => {{
let (overflow_x, _overflow_overflow) = $op;
overflow_x
}};
}
#[macro_export]
#[doc(hidden)]
macro_rules! panic_on_overflow {
($name: expr) => {
if $name {
panic!("arithmetic operation overflow")
}
};
}
#[macro_export]
#[doc(hidden)]
macro_rules! impl_mul_from {
($name: ty, $other: ident) => {
impl $crate::core_::ops::Mul<$other> for $name {
type Output = $name;
fn mul(self, other: $other) -> $name {
let bignum: $name = other.into();
let (result, overflow) = self.overflowing_mul(bignum);
$crate::panic_on_overflow!(overflow);
result
}
}
impl<'a> $crate::core_::ops::Mul<&'a $other> for $name {
type Output = $name;
fn mul(self, other: &'a $other) -> $name {
let bignum: $name = (*other).into();
let (result, overflow) = self.overflowing_mul(bignum);
$crate::panic_on_overflow!(overflow);
result
}
}
impl<'a> $crate::core_::ops::Mul<&'a $other> for &'a $name {
type Output = $name;
fn mul(self, other: &'a $other) -> $name {
let bignum: $name = (*other).into();
let (result, overflow) = self.overflowing_mul(bignum);
$crate::panic_on_overflow!(overflow);
result
}
}
impl<'a> $crate::core_::ops::Mul<$other> for &'a $name {
type Output = $name;
fn mul(self, other: $other) -> $name {
let bignum: $name = other.into();
let (result, overflow) = self.overflowing_mul(bignum);
$crate::panic_on_overflow!(overflow);
result
}
}
impl $crate::core_::ops::MulAssign<$other> for $name {
fn mul_assign(&mut self, other: $other) {
let result = *self * other;
*self = result
}
}
};
}
#[macro_export]
#[doc(hidden)]
macro_rules! impl_mul_for_primitive {
($name: ty, $other: ident) => {
impl $crate::core_::ops::Mul<$other> for $name {
type Output = $name;
fn mul(self, other: $other) -> $name {
let (result, carry) = self.overflowing_mul_u64(other as u64);
$crate::panic_on_overflow!(carry > 0);
result
}
}
impl<'a> $crate::core_::ops::Mul<&'a $other> for $name {
type Output = $name;
fn mul(self, other: &'a $other) -> $name {
let (result, carry) = self.overflowing_mul_u64(*other as u64);
$crate::panic_on_overflow!(carry > 0);
result
}
}
impl<'a> $crate::core_::ops::Mul<&'a $other> for &'a $name {
type Output = $name;
fn mul(self, other: &'a $other) -> $name {
let (result, carry) = self.overflowing_mul_u64(*other as u64);
$crate::panic_on_overflow!(carry > 0);
result
}
}
impl<'a> $crate::core_::ops::Mul<$other> for &'a $name {
type Output = $name;
fn mul(self, other: $other) -> $name {
let (result, carry) = self.overflowing_mul_u64(other as u64);
$crate::panic_on_overflow!(carry > 0);
result
}
}
impl $crate::core_::ops::MulAssign<$other> for $name {
fn mul_assign(&mut self, other: $other) {
let result = *self * (other as u64);
*self = result
}
}
};
}
#[macro_export]
macro_rules! construct_uint {
( $(#[$attr:meta])* $visibility:vis struct $name:ident (1); ) => {
$crate::construct_uint!{ @construct $(#[$attr])* $visibility struct $name (1); }
};
( $(#[$attr:meta])* $visibility:vis struct $name:ident ( $n_words:tt ); ) => {
$crate::construct_uint! { @construct $(#[$attr])* $visibility struct $name ($n_words); }
impl $crate::core_::convert::From<u128> for $name {
fn from(value: u128) -> $name {
let mut ret = [0; $n_words];
ret[0] = value as u64;
ret[1] = (value >> 64) as u64;
$name(ret)
}
}
impl $crate::core_::convert::From<i128> for $name {
fn from(value: i128) -> $name {
match value >= 0 {
true => From::from(value as u128),
false => { panic!("Unsigned integer can't be created from negative value"); }
}
}
}
impl $name {
/// Low 2 words (u128)
#[inline]
pub const fn low_u128(&self) -> u128 {
let &$name(ref arr) = self;
((arr[1] as u128) << 64) + arr[0] as u128
}
/// Conversion to u128 with overflow checking
///
/// # Panics
///
/// Panics if the number is larger than 2^128.
#[inline]
pub fn as_u128(&self) -> u128 {
let &$name(ref arr) = self;
for i in 2..$n_words {
if arr[i] != 0 {
panic!("Integer overflow when casting to u128")
}
}
self.low_u128()
}
}
impl $crate::core_::convert::TryFrom<$name> for u128 {
type Error = &'static str;
#[inline]
fn try_from(u: $name) -> $crate::core_::result::Result<u128, &'static str> {
let $name(arr) = u;
for i in 2..$n_words {
if arr[i] != 0 {
return Err("integer overflow when casting to u128");
}
}
Ok(((arr[1] as u128) << 64) + arr[0] as u128)
}
}
impl $crate::core_::convert::TryFrom<$name> for i128 {
type Error = &'static str;
#[inline]
fn try_from(u: $name) -> $crate::core_::result::Result<i128, &'static str> {
let err_str = "integer overflow when casting to i128";
let i = u128::try_from(u).map_err(|_| err_str)?;
if i > i128::max_value() as u128 {
Err(err_str)
} else {
Ok(i as i128)
}
}
}
};
( @construct $(#[$attr:meta])* $visibility:vis struct $name:ident ( $n_words:tt ); ) => {
/// Little-endian large integer type
#[repr(C)]
$(#[$attr])*
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
$visibility struct $name (pub [u64; $n_words]);
/// Get a reference to the underlying little-endian words.
impl AsRef<[u64]> for $name {
#[inline]
fn as_ref(&self) -> &[u64] {
&self.0
}
}
impl<'a> From<&'a $name> for $name {
fn from(x: &'a $name) -> $name {
*x
}
}
impl $name {
const WORD_BITS: usize = 64;
/// Maximum value.
pub const MAX: $name = $name([u64::max_value(); $n_words]);
/// Converts a string slice in a given base to an integer. Only supports radixes of 10
/// and 16.
pub fn from_str_radix(txt: &str, radix: u32) -> Result<Self, $crate::FromStrRadixErr> {
let parsed = match radix {
10 => Self::from_dec_str(txt)?,
16 => core::str::FromStr::from_str(txt)?,
_ => return Err($crate::FromStrRadixErr::unsupported()),
};
Ok(parsed)
}
/// Convert from a decimal string.
pub fn from_dec_str(value: &str) -> $crate::core_::result::Result<Self, $crate::FromDecStrErr> {
let mut res = Self::default();
for b in value.bytes().map(|b| b.wrapping_sub(b'0')) {
if b > 9 {
return Err($crate::FromDecStrErr::InvalidCharacter)
}
let (r, overflow) = res.overflowing_mul_u64(10);
if overflow > 0 {
return Err($crate::FromDecStrErr::InvalidLength);
}
let (r, overflow) = r.overflowing_add(b.into());
if overflow {
return Err($crate::FromDecStrErr::InvalidLength);
}
res = r;
}
Ok(res)
}
/// Conversion to u32
#[inline]
pub const fn low_u32(&self) -> u32 {
let &$name(ref arr) = self;
arr[0] as u32
}
/// Low word (u64)
#[inline]
pub const fn low_u64(&self) -> u64 {
let &$name(ref arr) = self;
arr[0]
}
/// Conversion to u32 with overflow checking
///
/// # Panics
///
/// Panics if the number is larger than 2^32.
#[inline]
pub fn as_u32(&self) -> u32 {
let &$name(ref arr) = self;
if !self.fits_word() || arr[0] > u32::max_value() as u64 {
panic!("Integer overflow when casting to u32")
}
self.as_u64() as u32
}
/// Conversion to u64 with overflow checking
///
/// # Panics
///
/// Panics if the number is larger than u64::max_value().
#[inline]
pub fn as_u64(&self) -> u64 {
let &$name(ref arr) = self;
if !self.fits_word() {
panic!("Integer overflow when casting to u64")
}
arr[0]
}
/// Conversion to usize with overflow checking
///
/// # Panics
///
/// Panics if the number is larger than usize::max_value().
#[inline]
pub fn as_usize(&self) -> usize {
let &$name(ref arr) = self;
if !self.fits_word() || arr[0] > usize::max_value() as u64 {
panic!("Integer overflow when casting to usize")
}
arr[0] as usize
}
/// Whether this is zero.
#[inline]
pub const fn is_zero(&self) -> bool {
let &$name(ref arr) = self;
let mut i = 0;
while i < $n_words { if arr[i] != 0 { return false; } else { i += 1; } }
return true;
}
// Whether this fits u64.
#[inline]
fn fits_word(&self) -> bool {
let &$name(ref arr) = self;
for i in 1..$n_words { if arr[i] != 0 { return false; } }
return true;
}
/// Return the least number of bits needed to represent the number
#[inline]
pub fn bits(&self) -> usize {
let &$name(ref arr) = self;
for i in 1..$n_words {
if arr[$n_words - i] > 0 { return (0x40 * ($n_words - i + 1)) - arr[$n_words - i].leading_zeros() as usize; }
}
0x40 - arr[0].leading_zeros() as usize
}
/// Return if specific bit is set.
///
/// # Panics
///
/// Panics if `index` exceeds the bit width of the number.
#[inline]
pub const fn bit(&self, index: usize) -> bool {
let &$name(ref arr) = self;
arr[index / 64] & (1 << (index % 64)) != 0
}
/// Returns the number of leading zeros in the binary representation of self.
pub fn leading_zeros(&self) -> u32 {
let mut r = 0;
for i in 0..$n_words {
let w = self.0[$n_words - i - 1];
if w == 0 {
r += 64;
} else {
r += w.leading_zeros();
break;
}
}
r
}
/// Returns the number of trailing zeros in the binary representation of self.
pub fn trailing_zeros(&self) -> u32 {
let mut r = 0;
for i in 0..$n_words {
let w = self.0[i];
if w == 0 {
r += 64;
} else {
r += w.trailing_zeros();
break;
}
}
r
}
/// Return specific byte. Byte 0 is the least significant value (ie~ little endian).
///
/// # Panics
///
/// Panics if `index` exceeds the byte width of the number.
#[inline]
pub const fn byte(&self, index: usize) -> u8 {
let &$name(ref arr) = self;
(arr[index / 8] >> (((index % 8)) * 8)) as u8
}
/// Write to the slice in big-endian format.
#[inline]
pub fn to_big_endian(&self, bytes: &mut [u8]) {
use $crate::byteorder::{ByteOrder, BigEndian};
debug_assert!($n_words * 8 == bytes.len());
for i in 0..$n_words {
BigEndian::write_u64(&mut bytes[8 * i..], self.0[$n_words - i - 1]);
}
}
/// Write to the slice in little-endian format.
#[inline]
pub fn to_little_endian(&self, bytes: &mut [u8]) {
use $crate::byteorder::{ByteOrder, LittleEndian};
debug_assert!($n_words * 8 == bytes.len());
for i in 0..$n_words {
LittleEndian::write_u64(&mut bytes[8 * i..], self.0[i]);
}
}
/// Create `10**n` as this type.
///
/// # Panics
///
/// Panics if the result overflows the type.
#[inline]
pub fn exp10(n: usize) -> Self {
match n {
0 => Self::from(1u64),
_ => Self::exp10(n - 1) * 10u32
}
}
/// Zero (additive identity) of this type.
#[inline]
pub const fn zero() -> Self {
Self([0; $n_words])
}
/// One (multiplicative identity) of this type.
#[inline]
pub const fn one() -> Self {
let mut words = [0; $n_words];
words[0] = 1u64;
Self(words)
}
/// The maximum value which can be inhabited by this type.
#[inline]
pub const fn max_value() -> Self {
Self::MAX
}
fn full_shl(self, shift: u32) -> [u64; $n_words + 1] {
debug_assert!(shift < Self::WORD_BITS as u32);
let mut u = [0u64; $n_words + 1];
let u_lo = self.0[0] << shift;
let u_hi = self >> (Self::WORD_BITS as u32 - shift);
u[0] = u_lo;
u[1..].copy_from_slice(&u_hi.0[..]);
u
}
fn full_shr(u: [u64; $n_words + 1], shift: u32) -> Self {
debug_assert!(shift < Self::WORD_BITS as u32);
let mut res = Self::zero();
for i in 0..$n_words {
res.0[i] = u[i] >> shift;
}
// carry
if shift > 0 {
for i in 1..=$n_words {
res.0[i - 1] |= u[i] << (Self::WORD_BITS as u32 - shift);
}
}
res
}
fn full_mul_u64(self, by: u64) -> [u64; $n_words + 1] {
let (prod, carry) = self.overflowing_mul_u64(by);
let mut res = [0u64; $n_words + 1];
res[..$n_words].copy_from_slice(&prod.0[..]);
res[$n_words] = carry;
res
}
fn div_mod_small(mut self, other: u64) -> (Self, Self) {
let mut rem = 0u64;
self.0.iter_mut().rev().for_each(|d| {
let (q, r) = Self::div_mod_word(rem, *d, other);
*d = q;
rem = r;
});
(self, rem.into())
}
// See Knuth, TAOCP, Volume 2, section 4.3.1, Algorithm D.
fn div_mod_knuth(self, mut v: Self, n: usize, m: usize) -> (Self, Self) {
debug_assert!(self.bits() >= v.bits() && !v.fits_word());
debug_assert!(n + m <= $n_words);
// D1.
// Make sure 64th bit in v's highest word is set.
// If we shift both self and v, it won't affect the quotient
// and the remainder will only need to be shifted back.
let shift = v.0[n - 1].leading_zeros();
v <<= shift;
// u will store the remainder (shifted)
let mut u = self.full_shl(shift);
// quotient
let mut q = Self::zero();
let v_n_1 = v.0[n - 1];
let v_n_2 = v.0[n - 2];
// D2. D7.
// iterate from m downto 0
for j in (0..=m).rev() {
let u_jn = u[j + n];
// D3.
// q_hat is our guess for the j-th quotient digit
// q_hat = min(b - 1, (u_{j+n} * b + u_{j+n-1}) / v_{n-1})
// b = 1 << WORD_BITS
// Theorem B: q_hat >= q_j >= q_hat - 2
let mut q_hat = if u_jn < v_n_1 {
let (mut q_hat, mut r_hat) = Self::div_mod_word(u_jn, u[j + n - 1], v_n_1);
// this loop takes at most 2 iterations
loop {
// check if q_hat * v_{n-2} > b * r_hat + u_{j+n-2}
let (hi, lo) = Self::split_u128(u128::from(q_hat) * u128::from(v_n_2));
if (hi, lo) <= (r_hat, u[j + n - 2]) {
break;
}
// then iterate till it doesn't hold
q_hat -= 1;
let (new_r_hat, overflow) = r_hat.overflowing_add(v_n_1);
r_hat = new_r_hat;
// if r_hat overflowed, we're done
if overflow {
break;
}
}
q_hat
} else {
// here q_hat >= q_j >= q_hat - 1
u64::max_value()
};
// ex. 20:
// since q_hat * v_{n-2} <= b * r_hat + u_{j+n-2},
// either q_hat == q_j, or q_hat == q_j + 1
// D4.
// let's assume optimistically q_hat == q_j
// subtract (q_hat * v) from u[j..]
let q_hat_v = v.full_mul_u64(q_hat);
// u[j..] -= q_hat_v;
let c = Self::sub_slice(&mut u[j..], &q_hat_v[..n + 1]);
// D6.
// actually, q_hat == q_j + 1 and u[j..] has overflowed
// highly unlikely ~ (1 / 2^63)
if c {
q_hat -= 1;
// add v to u[j..]
let c = Self::add_slice(&mut u[j..], &v.0[..n]);
u[j + n] = u[j + n].wrapping_add(u64::from(c));
}
// D5.
q.0[j] = q_hat;
}
// D8.
let remainder = Self::full_shr(u, shift);
(q, remainder)
}
// Returns the least number of words needed to represent the nonzero number
fn words(bits: usize) -> usize {
debug_assert!(bits > 0);
1 + (bits - 1) / Self::WORD_BITS
}
/// Returns a pair `(self / other, self % other)`.
///
/// # Panics
///
/// Panics if `other` is zero.
pub fn div_mod(mut self, mut other: Self) -> (Self, Self) {
use $crate::core_::cmp::Ordering;
let my_bits = self.bits();
let your_bits = other.bits();
assert!(your_bits != 0, "division by zero");
// Early return in case we are dividing by a larger number than us
if my_bits < your_bits {
return (Self::zero(), self);
}
if your_bits <= Self::WORD_BITS {
return self.div_mod_small(other.low_u64());
}
let (n, m) = {
let my_words = Self::words(my_bits);
let your_words = Self::words(your_bits);
(your_words, my_words - your_words)
};
self.div_mod_knuth(other, n, m)
}
/// Compute the highest `n` such that `n * n <= self`.
pub fn integer_sqrt(&self) -> Self {
let one = Self::one();
if self <= &one {
return *self;
}
// the implementation is based on:
// https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Set the initial guess to something higher than √self.
let shift: u32 = (self.bits() as u32 + 1) / 2;
let mut x_prev = one << shift;
loop {
let x = (x_prev + self / x_prev) >> 1;
if x >= x_prev {
return x_prev;
}
x_prev = x;
}
}
/// Fast exponentiation by squaring
/// https://en.wikipedia.org/wiki/Exponentiation_by_squaring
///
/// # Panics
///
/// Panics if the result overflows the type.
pub fn pow(self, expon: Self) -> Self {
if expon.is_zero() {
return Self::one()
}
let is_even = |x : &Self| x.low_u64() & 1 == 0;
let u_one = Self::one();
let mut y = u_one;
let mut n = expon;
let mut x = self;