-
Notifications
You must be signed in to change notification settings - Fork 657
/
low-volatility-factor-effect-in-stocks.py
133 lines (101 loc) · 4.75 KB
/
low-volatility-factor-effect-in-stocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#region imports
from AlgorithmImports import *
#endregion
# https://quantpedia.com/strategies/low-volatility-factor-effect-in-stocks-long-only-version/
#
# The investment universe consists of global large-cap stocks (or US large-cap stocks). At the end of each month, the investor constructs
# equally weighted decile portfolios by ranking the stocks on the past three-year volatility of weekly returns. The investor goes long
# stocks in the top decile (stocks with the lowest volatility).
#
# QC implementation changes:
# - Top quartile (stocks with the lowest volatility) is selected instead of decile.
import numpy as np
class LowVolatilityFactorEffectStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.period = 12*21
self.coarse_count = 3000
self.last_coarse = []
self.data = {}
self.long = []
self.selection_flag = True
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(10)
def CoarseSelectionFunction(self, coarse):
# Update the rolling window every day.
for stock in coarse:
symbol = stock.Symbol
# Store daily price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
if not self.selection_flag:
return Universe.Unchanged
selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa']
# selected = [x.Symbol
# for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
# key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(self.period)
history = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet.")
continue
closes = history.loc[symbol].close
for time, close in closes.iteritems():
self.data[symbol].update(close)
return [x for x in selected if self.data[x].is_ready()]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0]
# market cap sorting
if len(fine) > self.coarse_count:
sorted_by_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)
fine = sorted_by_market_cap[:self.coarse_count]
weekly_vol = {x.Symbol : self.data[x.Symbol].volatility() for x in fine}
# volatility sorting
sorted_by_vol = sorted(weekly_vol.items(), key = lambda x: x[1], reverse = True)
quartile = int(len(sorted_by_vol) / 4)
self.long = [x[0] for x in sorted_by_vol[-quartile:]]
return self.long
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.long:
self.Liquidate(symbol)
for symbol in self.long:
if symbol in data and data[symbol]:
self.SetHoldings(symbol, 1 / len(self.long))
self.long.clear()
def Selection(self):
self.selection_flag = True
class SymbolData():
def __init__(self, period):
self.price = RollingWindow[float](period)
def update(self, value):
self.price.Add(value)
def is_ready(self) -> bool:
return self.price.IsReady
def volatility(self) -> float:
closes = [x for x in self.price]
# Weekly volatility calc.
separete_weeks = [closes[x:x+5] for x in range(0, len(closes), 5)]
weekly_returns = [(x[0] - x[-1]) / x[-1] for x in separete_weeks]
return np.std(weekly_returns)
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))