-
Notifications
You must be signed in to change notification settings - Fork 130
/
Course Schedule.js
141 lines (116 loc) · 3.97 KB
/
Course Schedule.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/**
* @param {number} numCourses
* @param {number[][]} prerequisites
* @return {boolean}
*/
var constructGraph = function(numNodes, pre) {
var nodes = [];
for (var i = 0; i < numNodes; i++) {
var node = {};
node.neighbors = [];
nodes[i] = node;
}
for (var j = 0; j < pre.length; j++) {
var s = pre[j][1];
var d = pre[j][0];
nodes[s].neighbors.push(nodes[d]);
}
return nodes;
}
// Return true if there is a cycle detected.
var dfs = function(startNode, parents) {
if (parents.indexOf(startNode) >= 0) return true;
if (startNode.visited) return false;
startNode.visited = true;
var neighbors = startNode.neighbors;
parents.push(startNode);
for (var i = 0; i < neighbors.length; i++) {
var hasCycle = dfs(neighbors[i], parents);
if (hasCycle) return true;
}
parents.pop();
}
var canFinish = function(numCourses, prerequisites) {
var nodes = constructGraph(numCourses, prerequisites);
for (var i = 0; i < nodes.length; i++) {
var hasCycle = dfs(nodes[i], []);
if (hasCycle) return false;
}
return true;
};
// SOLUTION 2
/**
There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
click to show more hints.
Hints:
This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
Topological sort could also be done via BFS.
*/
/**
* @param {number} numCourses
* @param {number[][]} prerequisites
* @return {boolean}
*/
var canFinish = function(numCourses, prerequisites) {
var courses = [],
prereqCounts = [],
temp,
setIter,
i,
j,
k;
for (i = 0; i < numCourses; i++) {
courses.push(new Set());
}
// [1] is [0]'s prerequisite
for (i = 0; i < prerequisites.length; i++) {
courses[prerequisites[i][1]].add(prerequisites[i][0]);
}
for (i = 0; i < numCourses; i++) {
prereqCounts[i] = 0;
}
// count the pre-courses
for (i = 0; i < numCourses; i++) {
temp = Array.from(courses[i]);
// setIter = temp[Symbol.iterator]();
// while(setIter.hasNext()) {
// prereqCounts[setIter.next()]++;
// }
for (j = 0; j < temp.length; j++) {
prereqCounts[temp[j]]++;
}
}
// remove a non-pre course each time
for (i = 0; i < numCourses; i++) {
for (j = 0; j < numCourses; j++) {
if (prereqCounts[j] === 0) {
break;
}
}
// if didn't find a non-pre course
if (j === numCourses) {
return false;
}
prereqCounts[j] = -1;
// decrease courses that post the course
temp = Array.from(courses[j]);
// setIter = temp[Symbol.iterator]();
// while(setIter.hasNext()) {
// prereqCounts[setIter.next()]--;
// }
for (k = 0; k < temp.length; k++) {
prereqCounts[temp[k]]--;
}
}
return true;
};