Skip to content

Conversation

@mzeitlin11
Copy link
Member

-     3.22±0.09ms       1.29±0.3ms     0.40  rolling.EWMMethods.time_ewm('DataFrame', 10, 'int', 'mean')
-      2.92±0.1ms       1.08±0.1ms     0.37  rolling.EWMMethods.time_ewm('DataFrame', 1000, 'int', 'mean')
-      2.68±0.1ms        959±100μs     0.36  rolling.EWMMethods.time_ewm('DataFrame', 1000, 'float', 'mean')
-      3.00±0.2ms      1.02±0.03ms     0.34  rolling.EWMMethods.time_ewm('DataFrame', 10, 'float', 'mean')
-      2.78±0.1ms        850±100μs     0.31  rolling.EWMMethods.time_ewm('Series', 10, 'int', 'mean')
-      2.34±0.2ms         683±30μs     0.29  rolling.EWMMethods.time_ewm('Series', 10, 'float', 'mean')
-     2.74±0.06ms         739±60μs     0.27  rolling.EWMMethods.time_ewm('Series', 1000, 'float', 'mean')
-      2.55±0.3ms         681±40μs     0.27  rolling.EWMMethods.time_ewm('Series', 1000, 'int', 'mean')

@mzeitlin11 mzeitlin11 added Performance Memory or execution speed performance Regression Functionality that used to work in a prior pandas version Window rolling, ewma, expanding labels Aug 15, 2021
@mzeitlin11 mzeitlin11 added this to the 1.3.3 milestone Aug 15, 2021
@jbrockmendel
Copy link
Member

nice speedup, cc @mroeschke

Copy link
Member

@mroeschke mroeschke left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks! LGTM

Copy link
Contributor

@jreback jreback left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yep lgtm

Fixed regressions
~~~~~~~~~~~~~~~~~
- Performance regression in :meth:`DataFrame.isin` and :meth:`Series.isin` for nullable data types (:issue:`42714`)
- Performance regression in :meth:`core.window.ewm.ExponentialMovingWindow.mean` (:issue:`42333`)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

move to 1.3.3

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

def ewma(const float64_t[:] vals, const int64_t[:] start, const int64_t[:] end,
int minp, float64_t com, bint adjust, bint ignore_na,
const float64_t[:] deltas) -> np.ndarray:
const float64_t[:] deltas=None) -> np.ndarray:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can u update the doc string

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

@jreback jreback merged commit 4d986c5 into pandas-dev:master Aug 16, 2021
@jreback
Copy link
Contributor

jreback commented Aug 16, 2021

thanks @mzeitlin11

@jreback
Copy link
Contributor

jreback commented Aug 16, 2021

@meeseeksdev backport 1.3.x

@lumberbot-app
Copy link

lumberbot-app bot commented Aug 16, 2021

Something went wrong ... Please have a look at my logs.

@mzeitlin11 mzeitlin11 deleted the regr_ewm branch August 16, 2021 21:01
simonjayhawkins pushed a commit that referenced this pull request Aug 17, 2021
feefladder pushed a commit to feefladder/pandas that referenced this pull request Sep 7, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

Performance Memory or execution speed performance Regression Functionality that used to work in a prior pandas version Window rolling, ewma, expanding

Projects

None yet

Development

Successfully merging this pull request may close these issues.

REGR: rolling.EWMMethods.time_ewm

4 participants