4242 typ = 'method' , overwrite = True )
4343class CategoricalIndex (Index , accessor .PandasDelegate ):
4444 """
45- Immutable Index implementing an ordered, sliceable set. CategoricalIndex
46- represents a sparsely populated Index with an underlying Categorical.
45+ Index based on an underlying :class:`Categorical`.
46+
47+ CategoricalIndex, like Categorical, can only take on a limited,
48+ and usually fixed, number of possible values (`categories`). Also,
49+ like Categorical, it might have an order, but numerical operations
50+ (additions, divisions, ...) are not possible.
4751
4852 Parameters
4953 ----------
50- data : array-like or Categorical, (1-dimensional)
51- categories : optional, array-like
52- categories for the CategoricalIndex
53- ordered : boolean,
54- designating if the categories are ordered
55- copy : bool
56- Make a copy of input ndarray
57- name : object
58- Name to be stored in the index
54+ data : array-like (1-dimensional)
55+ The values of the categorical. If `categories` are given, values not in
56+ `categories` will be replaced with NaN.
57+ categories : index-like, optional
58+ The categories for the categorical. Items need to be unique.
59+ If the categories are not given here (and also not in `dtype`), they
60+ will be inferred from the `data`.
61+ ordered : bool, optional
62+ Whether or not this categorical is treated as an ordered
63+ categorical. If not given here or in `dtype`, the resulting
64+ categorical will be unordered.
65+ dtype : CategoricalDtype or the string "category", optional
66+ If :class:`CategoricalDtype`, cannot be used together with
67+ `categories` or `ordered`.
68+
69+ .. versionadded:: 0.21.0
70+ copy : bool, default False
71+ Make a copy of input ndarray.
72+ name : object, optional
73+ Name to be stored in the index.
5974
6075 Attributes
6176 ----------
@@ -75,9 +90,45 @@ class CategoricalIndex(Index, accessor.PandasDelegate):
7590 as_unordered
7691 map
7792
93+ Raises
94+ ------
95+ ValueError
96+ If the categories do not validate.
97+ TypeError
98+ If an explicit ``ordered=True`` is given but no `categories` and the
99+ `values` are not sortable.
100+
78101 See Also
79102 --------
80- Categorical, Index
103+ Index : The base pandas Index type.
104+ Categorical : A categorical array.
105+ CategoricalDtype : Type for categorical data.
106+
107+ Notes
108+ -----
109+ See the `user guide
110+ <http://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#categoricalindex>`_
111+ for more.
112+
113+ Examples
114+ --------
115+ >>> pd.CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'])
116+ CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') # noqa
117+
118+ ``CategoricalIndex`` can also be instantiated from a ``Categorical``:
119+
120+ >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'])
121+ >>> pd.CategoricalIndex(c)
122+ CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') # noqa
123+
124+ Ordered ``CategoricalIndex`` can have a min and max value.
125+
126+ >>> ci = pd.CategoricalIndex(['a','b','c','a','b','c'], ordered=True,
127+ ... categories=['c', 'b', 'a'])
128+ >>> ci
129+ CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['c', 'b', 'a'], ordered=True, dtype='category') # noqa
130+ >>> ci.min()
131+ 'c'
81132 """
82133
83134 _typ = 'categoricalindex'
0 commit comments