@@ -66,16 +66,13 @@ The pandas I/O API is a set of top level ``reader`` functions accessed like
6666CSV & Text files
6767----------------
6868
69- The two workhorse functions for reading text files (a.k.a. flat files) are
70- :func: `read_csv ` and :func: `read_table `. They both use the same parsing code to
71- intelligently convert tabular data into a ``DataFrame `` object. See the
72- :ref: `cookbook<cookbook.csv> ` for some advanced strategies.
69+ The workhorse function for reading text files (a.k.a. flat files) is
70+ :func: `read_csv `. See the :ref: `cookbook<cookbook.csv> ` for some advanced strategies.
7371
7472Parsing options
7573'''''''''''''''
7674
77- The functions :func: `read_csv ` and :func: `read_table ` accept the following
78- common arguments:
75+ :func: `read_csv ` accepts the following common arguments:
7976
8077Basic
8178+++++
@@ -780,8 +777,8 @@ Date Handling
780777Specifying Date Columns
781778+++++++++++++++++++++++
782779
783- To better facilitate working with datetime data, :func: `read_csv ` and
784- :func: ` read_table ` use the keyword arguments ``parse_dates `` and ``date_parser ``
780+ To better facilitate working with datetime data, :func: `read_csv `
781+ uses the keyword arguments ``parse_dates `` and ``date_parser ``
785782to allow users to specify a variety of columns and date/time formats to turn the
786783input text data into ``datetime `` objects.
787784
@@ -1434,7 +1431,7 @@ Suppose you have data indexed by two columns:
14341431
14351432 print (open (' data/mindex_ex.csv' ).read())
14361433
1437- The ``index_col `` argument to ``read_csv `` and `` read_table `` can take a list of
1434+ The ``index_col `` argument to ``read_csv `` can take a list of
14381435column numbers to turn multiple columns into a ``MultiIndex `` for the index of the
14391436returned object:
14401437
@@ -1505,8 +1502,8 @@ class of the csv module. For this, you have to specify ``sep=None``.
15051502
15061503 .. ipython :: python
15071504
1508- print (open (' tmp2.sv' ).read())
1509- pd.read_csv(' tmp2.sv' , sep = None , engine = ' python' )
1505+ print (open (' tmp2.sv' ).read())
1506+ pd.read_csv(' tmp2.sv' , sep = None , engine = ' python' )
15101507
15111508 .. _io.multiple_files :
15121509
@@ -1528,16 +1525,16 @@ rather than reading the entire file into memory, such as the following:
15281525.. ipython :: python
15291526
15301527 print (open (' tmp.sv' ).read())
1531- table = pd.read_table (' tmp.sv' , sep = ' |' )
1528+ table = pd.read_csv (' tmp.sv' , sep = ' |' )
15321529 table
15331530
15341531
1535- By specifying a ``chunksize `` to ``read_csv `` or `` read_table `` , the return
1532+ By specifying a ``chunksize `` to ``read_csv ``, the return
15361533value will be an iterable object of type ``TextFileReader ``:
15371534
15381535.. ipython :: python
15391536
1540- reader = pd.read_table (' tmp.sv' , sep = ' |' , chunksize = 4 )
1537+ reader = pd.read_csv (' tmp.sv' , sep = ' |' , chunksize = 4 )
15411538 reader
15421539
15431540 for chunk in reader:
@@ -1548,7 +1545,7 @@ Specifying ``iterator=True`` will also return the ``TextFileReader`` object:
15481545
15491546.. ipython :: python
15501547
1551- reader = pd.read_table (' tmp.sv' , sep = ' |' , iterator = True )
1548+ reader = pd.read_csv (' tmp.sv' , sep = ' |' , iterator = True )
15521549 reader.get_chunk(5 )
15531550
15541551 .. ipython :: python
@@ -3067,7 +3064,7 @@ Clipboard
30673064
30683065A handy way to grab data is to use the :meth: `~DataFrame.read_clipboard ` method,
30693066which takes the contents of the clipboard buffer and passes them to the
3070- ``read_table `` method. For instance, you can copy the following text to the
3067+ ``read_csv `` method. For instance, you can copy the following text to the
30713068clipboard (CTRL-C on many operating systems):
30723069
30733070.. code-block :: python
0 commit comments