@@ -31,7 +31,7 @@ The top-level :meth:`array` method can be used to create a new array, which may
3131stored in a :class: `Series `, :class: `Index `, or as a column in a :class: `DataFrame `.
3232
3333.. autosummary ::
34- :toctree: generated /
34+ :toctree: api /
3535
3636 array
3737
@@ -48,14 +48,14 @@ or timezone-aware values.
4848scalar type for timezone-naive or timezone-aware datetime data.
4949
5050.. autosummary ::
51- :toctree: generated /
51+ :toctree: api /
5252
5353 Timestamp
5454
5555Properties
5656~~~~~~~~~~
5757.. autosummary ::
58- :toctree: generated /
58+ :toctree: api /
5959
6060 Timestamp.asm8
6161 Timestamp.day
@@ -91,7 +91,7 @@ Properties
9191Methods
9292~~~~~~~
9393.. autosummary ::
94- :toctree: generated /
94+ :toctree: api /
9595
9696 Timestamp.astimezone
9797 Timestamp.ceil
@@ -142,7 +142,7 @@ is used.
142142If the data are tz-aware, then every value in the array must have the same timezone.
143143
144144.. autosummary ::
145- :toctree: generated /
145+ :toctree: api /
146146
147147 arrays.DatetimeArray
148148 DatetimeTZDtype
@@ -156,14 +156,14 @@ NumPy can natively represent timedeltas. Pandas provides :class:`Timedelta`
156156for symmetry with :class: `Timestamp `.
157157
158158.. autosummary ::
159- :toctree: generated /
159+ :toctree: api /
160160
161161 Timedelta
162162
163163Properties
164164~~~~~~~~~~
165165.. autosummary ::
166- :toctree: generated /
166+ :toctree: api /
167167
168168 Timedelta.asm8
169169 Timedelta.components
@@ -183,7 +183,7 @@ Properties
183183Methods
184184~~~~~~~
185185.. autosummary ::
186- :toctree: generated /
186+ :toctree: api /
187187
188188 Timedelta.ceil
189189 Timedelta.floor
@@ -196,7 +196,7 @@ Methods
196196A collection of timedeltas may be stored in a :class: `TimedeltaArray `.
197197
198198.. autosummary ::
199- :toctree: generated /
199+ :toctree: api /
200200
201201 arrays.TimedeltaArray
202202
@@ -210,14 +210,14 @@ Pandas represents spans of times as :class:`Period` objects.
210210Period
211211------
212212.. autosummary ::
213- :toctree: generated /
213+ :toctree: api /
214214
215215 Period
216216
217217Properties
218218~~~~~~~~~~
219219.. autosummary ::
220- :toctree: generated /
220+ :toctree: api /
221221
222222 Period.day
223223 Period.dayofweek
@@ -244,7 +244,7 @@ Properties
244244Methods
245245~~~~~~~
246246.. autosummary ::
247- :toctree: generated /
247+ :toctree: api /
248248
249249 Period.asfreq
250250 Period.now
@@ -255,7 +255,7 @@ A collection of timedeltas may be stored in a :class:`arrays.PeriodArray`.
255255Every period in a ``PeriodArray `` must have the same ``freq ``.
256256
257257.. autosummary ::
258- :toctree: generated /
258+ :toctree: api /
259259
260260 arrays.DatetimeArray
261261 PeriodDtype
@@ -268,14 +268,14 @@ Interval Data
268268Arbitrary intervals can be represented as :class: `Interval ` objects.
269269
270270.. autosummary ::
271- :toctree: generated /
271+ :toctree: api /
272272
273273 Interval
274274
275275Properties
276276~~~~~~~~~~
277277.. autosummary ::
278- :toctree: generated /
278+ :toctree: api /
279279
280280 Interval.closed
281281 Interval.closed_left
@@ -291,7 +291,7 @@ Properties
291291A collection of intervals may be stored in an :class: `IntervalArray `.
292292
293293.. autosummary ::
294- :toctree: generated /
294+ :toctree: api /
295295
296296 IntervalArray
297297 IntervalDtype
@@ -305,7 +305,7 @@ Nullable Integer
305305Pandas provides this through :class: `arrays.IntegerArray `.
306306
307307.. autosummary ::
308- :toctree: generated /
308+ :toctree: api /
309309
310310 arrays.IntegerArray
311311 Int8Dtype
@@ -327,21 +327,21 @@ limited, fixed set of values. The dtype of a ``Categorical`` can be described by
327327a :class: `pandas.api.types.CategoricalDtype `.
328328
329329.. autosummary ::
330- :toctree: generated /
330+ :toctree: api /
331331 :template: autosummary/class_without_autosummary.rst
332332
333333 CategoricalDtype
334334
335335.. autosummary ::
336- :toctree: generated /
336+ :toctree: api /
337337
338338 CategoricalDtype.categories
339339 CategoricalDtype.ordered
340340
341341Categorical data can be stored in a :class: `pandas.Categorical `
342342
343343.. autosummary ::
344- :toctree: generated /
344+ :toctree: api /
345345 :template: autosummary/class_without_autosummary.rst
346346
347347 Categorical
@@ -350,14 +350,14 @@ The alternative :meth:`Categorical.from_codes` constructor can be used when you
350350have the categories and integer codes already:
351351
352352.. autosummary ::
353- :toctree: generated /
353+ :toctree: api /
354354
355355 Categorical.from_codes
356356
357357The dtype information is available on the ``Categorical ``
358358
359359.. autosummary ::
360- :toctree: generated /
360+ :toctree: api /
361361
362362 Categorical.dtype
363363 Categorical.categories
@@ -368,7 +368,7 @@ The dtype information is available on the ``Categorical``
368368the Categorical back to a NumPy array, so categories and order information is not preserved!
369369
370370.. autosummary ::
371- :toctree: generated /
371+ :toctree: api /
372372
373373 Categorical.__array__
374374
@@ -391,7 +391,7 @@ Data where a single value is repeated many times (e.g. ``0`` or ``NaN``) may
391391be stored efficiently as a :class: `SparseArray `.
392392
393393.. autosummary ::
394- :toctree: generated /
394+ :toctree: api /
395395
396396 SparseArray
397397 SparseDtype
0 commit comments