@@ -927,8 +927,9 @@ def f(arg, *args, **kwargs):
927927 If False then only matching columns between self and other will be used
928928 and the output will be a DataFrame.
929929 If True then all pairwise combinations will be calculated and the
930- output will be a Panel in the case of DataFrame inputs. In the case of
931- missing elements, only complete pairwise observations will be used.
930+ output will be a MultiIndexed DataFrame in the case of DataFrame
931+ inputs. In the case of missing elements, only complete pairwise
932+ observations will be used.
932933 ddof : int, default 1
933934 Delta Degrees of Freedom. The divisor used in calculations
934935 is ``N - ddof``, where ``N`` represents the number of elements.""" )
@@ -964,11 +965,12 @@ def _get_cov(X, Y):
964965 other : Series, DataFrame, or ndarray, optional
965966 if not supplied then will default to self and produce pairwise output
966967 pairwise : bool, default None
967- If False then only matching columns between self and other will be used
968- and the output will be a DataFrame.
968+ If False then only matching columns between self and other will be
969+ used and the output will be a DataFrame.
969970 If True then all pairwise combinations will be calculated and the
970- output will be a Panel in the case of DataFrame inputs. In the case of
971- missing elements, only complete pairwise observations will be used.""" )
971+ output will be a MultiIndex DataFrame in the case of DataFrame inputs.
972+ In the case of missing elements, only complete pairwise observations
973+ will be used.""" )
972974
973975 def corr (self , other = None , pairwise = None , ** kwargs ):
974976 if other is None :
@@ -1397,8 +1399,9 @@ def _constructor(self):
13971399 If False then only matching columns between self and other will be used and
13981400 the output will be a DataFrame.
13991401 If True then all pairwise combinations will be calculated and the output
1400- will be a Panel in the case of DataFrame inputs. In the case of missing
1401- elements, only complete pairwise observations will be used.
1402+ will be a MultiIndex DataFrame in the case of DataFrame inputs.
1403+ In the case of missing elements, only complete pairwise observations will
1404+ be used.
14021405bias : boolean, default False
14031406 Use a standard estimation bias correction
14041407"""
@@ -1708,11 +1711,12 @@ def dataframe_from_int_dict(data, frame_template):
17081711 # TODO: not the most efficient (perf-wise)
17091712 # though not bad code-wise
17101713 from pandas import Panel , MultiIndex , Index
1711- p = Panel .from_dict (results ).swapaxes ('items' , 'major' )
1712- if len (p .major_axis ) > 0 :
1713- p .major_axis = arg1 .columns [p .major_axis ]
1714- if len (p .minor_axis ) > 0 :
1715- p .minor_axis = arg2 .columns [p .minor_axis ]
1714+ with warnings .catch_warnings (record = True ):
1715+ p = Panel .from_dict (results ).swapaxes ('items' , 'major' )
1716+ if len (p .major_axis ) > 0 :
1717+ p .major_axis = arg1 .columns [p .major_axis ]
1718+ if len (p .minor_axis ) > 0 :
1719+ p .minor_axis = arg2 .columns [p .minor_axis ]
17161720
17171721 if len (p .items ):
17181722 result = pd .concat (
0 commit comments