@@ -5563,39 +5563,52 @@ def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
55635563
55645564 def applymap (self , func ):
55655565 """
5566- Apply a function to a DataFrame that is intended to operate
5567- elementwise, i.e. like doing map(func, series) for each series in the
5568- DataFrame
5566+ Apply a function to a Dataframe elementwise.
5567+
5568+ This method applies a function that accepts and returns a scalar
5569+ to every element of a DataFrame.
55695570
55705571 Parameters
55715572 ----------
5572- func : function
5573- Python function, returns a single value from a single value
5574-
5575- Examples
5576- --------
5577-
5578- >>> df = pd.DataFrame(np.random.randn(3, 3))
5579- >>> df
5580- 0 1 2
5581- 0 -0.029638 1.081563 1.280300
5582- 1 0.647747 0.831136 -1.549481
5583- 2 0.513416 -0.884417 0.195343
5584- >>> df = df.applymap(lambda x: '%.2f' % x)
5585- >>> df
5586- 0 1 2
5587- 0 -0.03 1.08 1.28
5588- 1 0.65 0.83 -1.55
5589- 2 0.51 -0.88 0.20
5573+ func : callable
5574+ Python function, returns a single value from a single value.
55905575
55915576 Returns
55925577 -------
5593- applied : DataFrame
5578+ DataFrame
5579+ Transformed DataFrame.
55945580
55955581 See also
55965582 --------
5597- DataFrame.apply : For operations on rows/columns
5583+ DataFrame.apply : Apply a function along input axis of DataFrame
5584+
5585+ Examples
5586+ --------
5587+ >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
5588+ >>> df
5589+ 0 1
5590+ 0 1.000 2.120
5591+ 1 3.356 4.567
5592+
5593+ >>> df.applymap(lambda x: len(str(x)))
5594+ 0 1
5595+ 0 3 4
5596+ 1 5 5
5597+
5598+ Note that a vectorized version of `func` often exists, which will
5599+ be much faster. You could square each number elementwise.
5600+
5601+ >>> df.applymap(lambda x: x**2)
5602+ 0 1
5603+ 0 1.000000 4.494400
5604+ 1 11.262736 20.857489
5605+
5606+ But it's better to avoid applymap in that case.
55985607
5608+ >>> df ** 2
5609+ 0 1
5610+ 0 1.000000 4.494400
5611+ 1 11.262736 20.857489
55995612 """
56005613
56015614 # if we have a dtype == 'M8[ns]', provide boxed values
0 commit comments