@@ -1723,15 +1723,13 @@ def test_no_flex(self, f):
17231723
17241724 # DataFrame methods (which do not call _flex_binary_moment())
17251725
1726- with warnings .catch_warnings (record = True ):
1727-
1728- results = [f (df ) for df in self .df1s ]
1729- for (df , result ) in zip (self .df1s , results ):
1730- tm .assert_index_equal (result .index , df .columns )
1731- tm .assert_index_equal (result .columns , df .columns )
1732- for i , result in enumerate (results ):
1733- if i > 0 :
1734- self .compare (result , results [0 ])
1726+ results = [f (df ) for df in self .df1s ]
1727+ for (df , result ) in zip (self .df1s , results ):
1728+ tm .assert_index_equal (result .index , df .columns )
1729+ tm .assert_index_equal (result .columns , df .columns )
1730+ for i , result in enumerate (results ):
1731+ if i > 0 :
1732+ self .compare (result , results [0 ])
17351733
17361734 @pytest .mark .parametrize (
17371735 'f' , [lambda x : x .expanding ().cov (pairwise = True ),
@@ -1805,24 +1803,24 @@ def test_pairwise_with_other(self, f):
18051803 lambda x , y : x .ewm (com = 3 ).corr (y , pairwise = False ), ])
18061804 def test_no_pairwise_with_other (self , f ):
18071805
1808- with warnings . catch_warnings ( record = True ):
1809-
1810- # DataFrame with another DataFrame, pairwise=False
1811- results = [ f (df , self . df2 ) if df . columns . is_unique else None
1812- for df in self . df1s ]
1813- for ( df , result ) in zip ( self . df1s , results ):
1814- if result is not None :
1806+ # DataFrame with another DataFrame, pairwise=False
1807+ results = [ f ( df , self . df2 ) if df . columns . is_unique else None
1808+ for df in self . df1s ]
1809+ for (df , result ) in zip ( self . df1s , results ):
1810+ if result is not None :
1811+ with catch_warnings ( record = True ):
1812+ # we can have int and str columns
18151813 expected_index = df .index .union (self .df2 .index )
18161814 expected_columns = df .columns .union (self .df2 .columns )
1817- tm .assert_index_equal (result .index , expected_index )
1818- tm .assert_index_equal (result .columns , expected_columns )
1819- else :
1820- tm .assertRaisesRegexp (
1821- ValueError , "'arg1' columns are not unique" , f , df ,
1822- self .df2 )
1823- tm .assertRaisesRegexp (
1824- ValueError , "'arg2' columns are not unique" , f ,
1825- self .df2 , df )
1815+ tm .assert_index_equal (result .index , expected_index )
1816+ tm .assert_index_equal (result .columns , expected_columns )
1817+ else :
1818+ tm .assertRaisesRegexp (
1819+ ValueError , "'arg1' columns are not unique" , f , df ,
1820+ self .df2 )
1821+ tm .assertRaisesRegexp (
1822+ ValueError , "'arg2' columns are not unique" , f ,
1823+ self .df2 , df )
18261824
18271825 @pytest .mark .parametrize (
18281826 'f' , [lambda x , y : x .expanding ().cov (y ),
@@ -2664,7 +2662,7 @@ def test_rolling_functions_window_non_shrinkage_binary(self):
26642662 columns = Index (['A' , 'B' ], name = 'foo' ),
26652663 index = Index (range (4 ), name = 'bar' ))
26662664 df_expected = DataFrame (
2667- columns = Index (['A' , 'B' ]),
2665+ columns = Index (['A' , 'B' ], name = 'foo' ),
26682666 index = pd .MultiIndex .from_product ([df .index , df .columns ],
26692667 names = ['bar' , 'foo' ]),
26702668 dtype = 'float64' )
0 commit comments