forked from ByeongHyunPak/btc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
146 lines (116 loc) · 4.57 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import yaml
import argparse
import math
import torch
from tqdm import tqdm
from functools import partial
from torchvision import transforms
from torch.utils.data import DataLoader
import datasets
import models
import utils
import warnings
warnings.filterwarnings('ignore')
def batched_predict(model, inp, coord, scale, bsize):
if coord is None:
with torch.no_grad():
pred = model(inp)
else:
with torch.no_grad():
model.gen_feat(inp)
n = coord.shape[1]
ql = 0
preds = []
while ql < n:
qr = min(ql + bsize, n)
pred = model.query_rgb(coord[:, ql:qr, :], scale[:, ql:qr, :])
preds.append(pred)
ql = qr
pred = torch.cat(preds, dim=1)
return pred
def eval_psnr(loader, model, data_norm=None, eval_type=None,
eval_bsize=None, verbose=False):
if model is not None:
model.eval()
if data_norm is None:
data_norm = {
'inp': {'sub': [0], 'div': [1]},
'gt': {'sub': [0], 'div': [1]}
}
t = data_norm['inp']
inp_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).cuda()
inp_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).cuda()
t = data_norm['gt']
gt_sub = torch.FloatTensor(t['sub']).view(1, 1, -1).cuda()
gt_div = torch.FloatTensor(t['div']).view(1, 1, -1).cuda()
scale = None
if eval_type is None:
metric_fn = utils.calc_psnr
else:
dataset = eval_type.split('-')[0]
# scale = int(eval_type.split('-')[1])
scale = float(eval_type.split('-')[1])
metric_fn = partial(utils.calc_psnr, dataset=dataset, scale=scale)
val_res = utils.Averager()
pbar = tqdm(loader, leave=False, desc='val')
output_idx = 1
for batch in pbar:
for k, v in batch.items():
batch[k] = v.cuda()
inp = (batch['inp'] - inp_sub) / inp_div
if eval_bsize is None:
with torch.no_grad():
pred = model(inp, batch['coord'], batch['scale'])
else:
if scale is not None and scale > 4 and cell_decode:
pred = batched_predict(model, inp, batch['coord'], batch['scale']*scale/4, eval_bsize)
else:
pred = batched_predict(model, inp, batch['coord'], batch['scale'], eval_bsize)
pred = pred * gt_div + gt_sub
pred.clamp_(0, 1)
b, c, ih, iw = batch['inp'].shape
s = math.sqrt(batch['coord'].shape[1] / (ih * iw))
shape = [b, round(ih * s), round(iw * s), c]
pred = pred.view(*shape).permute(0, 3, 1, 2).contiguous()
batch['gt'] = batch['gt'].view(*shape).permute(0, 3, 1, 2).contiguous()
res = metric_fn(pred, batch['gt'])
val_res.add(res.item(), inp.shape[0])
if eval_type is not None:
data_case = eval_type.split('-')
save_path = f'./output/{model_name}/{data_case[0].upper()}/{data_case[1]}x'
if not os.path.exists(save_path):
os.makedirs(save_path)
for i in range(pred.shape[0]):
transforms.ToPILImage()(pred[i]).save(f'{save_path}/test_{output_idx:>03}.png')
output_idx += 1
if verbose:
pbar.set_description('val {:.4f}'.format(val_res.item()))
return val_res.item()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config')
parser.add_argument('--model')
parser.add_argument('--gpu', default='0')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
global model_name
model = models.make(torch.load(args.model)['model'], load_sd=True).cuda()
model_name = args.model.split('/')[-2]
global cell_decode
cell_decode = ('liif' in model_name) or ('lte' in model_name) or ('btc' in model_name)
spec = config['test_dataset']
dataset = datasets.make(spec['dataset'])
dataset = datasets.make(spec['wrapper'], args={'dataset': dataset, 'cell_decode': cell_decode})
loader = DataLoader(dataset, batch_size=spec['batch_size'], num_workers=8, pin_memory=True)
res = eval_psnr(
loader,
model,
data_norm = config.get('data_norm'),
eval_type = config.get('eval_type'),
eval_bsize = config.get('eval_bsize'),
verbose = True,
)
print('result: {:.4f}'.format(res))