This folder contains a simple webcam demo that illustrates how you can use maskrcnn_benchmark
for inference.
You can start it by running it from this folder, using one of the following commands:
# by default, it runs on the GPU
# for best results, use min-image-size 800
python webcam.py --min-image-size 800
# can also run it on the CPU
python webcam.py --min-image-size 300 MODEL.DEVICE cpu
# or change the model that you want to use
python webcam.py --config-file ../configs/caffe2/e2e_mask_rcnn_R_101_FPN_1x_caffe2.yaml --min-image-size 300 MODEL.DEVICE cpu
# in order to see the probability heatmaps, pass --show-mask-heatmaps
python webcam.py --min-image-size 300 --show-mask-heatmaps MODEL.DEVICE cpu
Build the image with the tag maskrcnn-benchmark
(check INSTALL.md for instructions)
Adjust permissions of the X server host (be careful with this step, refer to here for alternatives)
xhost +
Then run a container with the demo:
docker run --rm -it \
-e DISPLAY=${DISPLAY} \
--privileged \
-v /tmp/.X11-unix:/tmp/.X11-unix \
--device=/dev/video0:/dev/video0 \
--ipc=host maskrcnn-benchmark \
python demo/webcam.py --min-image-size 300 \
--config-file configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml
DISCLAIMER: This was tested for an Ubuntu 16.04 machine, the volume mapping may vary depending on your platform