-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathraster.R
339 lines (276 loc) · 11.3 KB
/
raster.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
##################################################################
## Source code for the book: "Displaying time series, spatial and
## space-time data with R"
## Copyright (C) 2013-2012 Oscar Perpiñán Lamigueiro
## This program is free software you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published
## by the Free Software Foundation; either version 2 of the License,
## or (at your option) any later version.
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
## 02111-1307, USA.
####################################################################
##################################################################
## Initial configuration
##################################################################
## Clone or download the repository and set the working directory
## with setwd to the folder where the repository is located.
##################################################################
## Raster maps
##################################################################
##################################################################
## Quantitative data
##################################################################
pdf(file="figs/leveplotSISavOrig.pdf")
library(raster)
library(rasterVis)
SISav <- raster('data/SISav')
levelplot(SISav)
dev.off()
library(maps)
library(mapdata)
library(maptools)
ext <- as.vector(extent(SISav))
boundaries <- map('worldHires',
xlim=ext[1:2], ylim=ext[3:4],
plot=FALSE)
boundaries <- map2SpatialLines(boundaries,
proj4string=CRS(projection(SISav)))
pdf(file="figs/leveplotSISavBoundaries.pdf")
levelplot(SISav) + layer(sp.lines(boundaries, lwd=0.5))
dev.off()
##################################################################
## Hill shading
##################################################################
old <- setwd(tempdir())
download.file('http://biogeo.ucdavis.edu/data/diva/msk_alt/ESP_msk_alt.zip', 'ESP_msk_alt.zip')
unzip('ESP_msk_alt.zip', exdir='.')
DEM <- raster('ESP_msk_alt')
slope <- terrain(DEM, 'slope')
aspect <- terrain(DEM, 'aspect')
hs <- hillShade(slope=slope, aspect=aspect,
angle=20, direction=30)
setwd(old)
png(filename="figs/hillShading.png",res=300,height=2000,width=2000)
## hillShade theme: gray colors and semitransparency
hsTheme <- modifyList(GrTheme(), list(regions=list(alpha=0.6)))
levelplot(SISav, panel=panel.levelplot.raster,
margin=FALSE, colorkey=FALSE) +
levelplot(hs, par.settings=hsTheme, maxpixels=1e6) +
layer(sp.lines(boundaries, lwd=0.5))
dev.off()
##################################################################
## Excursus: 3D visualization
##################################################################
plot3D(DEM, maxpixels=5e4)
writeSTL('figs/DEM.stl')
##################################################################
## Diverging palettes
##################################################################
meanRad <- cellStats(SISav, 'mean')
SISav <- SISav - meanRad
png(filename="figs/xyplotSISav.png",res=300,height=2000,width=2000)
xyplot(layer ~ y, data = SISav,
groups=cut(x, 5),
par.settings=rasterTheme(symbol=plinrain(n=5, end=200)),
xlab = 'Latitude', ylab = 'Solar radiation (scaled)',
auto.key=list(space='right', title='Longitude', cex.title=1.3))
dev.off()
pdf(file="figs/showDivPal.pdf")
divPal <- brewer.pal(n=9, 'PuOr')
divPal[5] <- "#FFFFFF"
showPal <- function(pal, labs=pal, cex=0.6, ...){
barplot(rep(1, length(pal)), col=pal,
names.arg=labs, cex.names=cex,
axes=FALSE, ...)
}
showPal(divPal)
dev.off()
pdf(file="figs/divPal_SISav_naive.pdf")
divTheme <- rasterTheme(region=divPal)
levelplot(SISav, contour=TRUE, par.settings=divTheme)
dev.off()
rng <- range(SISav[])
## Number of desired intervals
nInt <- 15
## Increment corresponding to the range and nInt
inc0 <- diff(rng)/nInt
## Number of intervals from the negative extreme to zero
n0 <- floor(abs(rng[1])/inc0)
## Update the increment adding 1/2 to position zero in the center of an interval
inc <- abs(rng[1])/(n0 + 1/2)
## Number of intervals from zero to the positive extreme
n1 <- ceiling((rng[2]/inc - 1/2) + 1)
## Collection of breaks
breaks <- seq(rng[1], by=inc, length= n0 + 1 + n1)
## Midpoints computed with the median of each interval
idx <- findInterval(SISav[], breaks, rightmost.closed=TRUE)
mids <- tapply(SISav[], idx, median)
## Maximum of the absolute value both limits
mx <- max(abs(breaks))
mids
pdf(file="figs/showBreak2Pal.pdf")
break2pal <- function(x, mx, pal){
## x = mx gives y = 1
## x = 0 gives y = 0.5
y <- 1/2*(x/mx + 1)
rgb(pal(y), maxColorValue=255)
}
## Interpolating function that maps colors with [0, 1]
## rgb(divRamp(0.5), maxColorValue=255) gives "#FFFFFF" (white)
divRamp <- colorRamp(divPal)
## Diverging palette where white is associated with the interval
## containing the zero
pal <- break2pal(mids, mx, divRamp)
showPal(pal, round(mids, 1))
dev.off()
pdf(file="figs/divPalSISav.pdf")
levelplot(SISav, par.settings=rasterTheme(region=pal),
at=breaks, contour=TRUE)
dev.off()
pdf(file="figs/divPalSISav_regions.pdf")
divTheme <- rasterTheme()
divTheme$regions$col <- pal
levelplot(SISav, par.settings=divTheme, at=breaks, contour=TRUE)
dev.off()
library(classInt)
cl <- classIntervals(SISav[],
## n=15, style='equal')
## style='hclust')
## style='sd')
style='kmeans')
## style='quantile')
cl
breaks <- cl$brks
pdf(file="figs/divPalSISav_classInt.pdf")
idx <- findInterval(SISav[], breaks, rightmost.closed=TRUE)
mids <- tapply(SISav[], idx, median)
mids
mx <- max(abs(breaks))
pal <- break2pal(mids, mx, divRamp)
divTheme$regions$col <- pal
levelplot(SISav, par.settings=divTheme, at=breaks, contour=TRUE)
dev.off()
##################################################################
## Categorical data
##################################################################
library(raster)
## China and India
ext <- extent(65, 135, 5, 55)
pop <- raster('875430rgb-167772161.0.FLOAT.TIFF')
pop <- crop(pop, ext)
pop[pop==99999] <- NA
landClass <- raster('241243rgb-167772161.0.TIFF')
landClass <- crop(landClass, ext)
landClass[landClass %in% c(0, 254)] <- NA
## Only four groups are needed:
## Forests: 1:5
## Shrublands, etc: 6:11
## Agricultural/Urban: 12:14
## Snow: 15:16
landClass <- cut(landClass, c(0, 5, 11, 14, 16))
## Add a Raster Attribute Table and define the raster as categorical data
landClass <- ratify(landClass)
## Configure the RAT: first create a RAT data.frame using the
## levels method; second, set the values for each class (to be
## used by levelplot); third, assign this RAT to the raster
## using again levels
rat <- levels(landClass)[[1]]
rat$classes <- c('Forest', 'Land', 'Urban', 'Snow')
levels(landClass) <- rat
pdf(file="figs/landClass.pdf")
library(rasterVis)
pal <- c('palegreen4', # Forest
'lightgoldenrod', # Land
'indianred4', # Urban
'snow3') # Snow
catTheme <- modifyList(rasterTheme(),
list(panel.background = list(col='lightskyblue1'),
regions = list(col= pal)))
levelplot(landClass, maxpixels=3.5e5, par.settings=catTheme,
panel=panel.levelplot.raster)
dev.off()
pdf(file="figs/populationNASA.pdf")
pPop <- levelplot(pop, zscaleLog=10, par.settings=BTCTheme,
maxpixels=3.5e5, panel=panel.levelplot.raster)
pPop
dev.off()
pdf(file="figs/histogramLandClass.pdf")
s <- stack(pop, landClass)
names(s) <- c('pop', 'landClass')
histogram(~log10(pop)|landClass, data=s,
scales=list(relation='free'))
dev.off()
##################################################################
## Multivariate legend
##################################################################
library(colorspace)
## at for each sub-levelplot is obtained from the global levelplot
at <- pPop$legend$bottom$args$key$at
classes <- rat$classes
nClasses <- length(classes)
pList <- lapply(1:nClasses, function(i){
landSub <- landClass
## Those cells from a different land class are set to NA...
landSub[!(landClass==i)] <- NA
## ... and the resulting raster masks the population raster
popSub <- mask(pop, landSub)
## The HCL color wheel is divided in nClasses
step <- 360/nClasses
## and a sequential palette is constructed with a hue from one of
## the color wheel parts
cols <- rev(sequential_hcl(16, h = (30 + step*(i-1))%%360))
pClass <- levelplot(popSub, zscaleLog=10, at=at,
maxpixels=3.5e5,
## labels only needed in the last legend
colorkey=(if (i==nClasses) TRUE else list(labels=list(labels=rep('', 17)))),
col.regions=cols, margin=FALSE)
})
png(filename="figs/popLandClass.png",res=300,height=2000,width=2000)
p <- Reduce('+', pList)
## Function to add a title to a legend
addTitle <- function(legend, title){
titleGrob <- textGrob(title, gp=gpar(fontsize=8), hjust=0.5, vjust=1)
## retrieve the legend from the trellis object
legendGrob <- eval(as.call(c(as.symbol(legend$fun), legend$args)))
## Layout of the legend WITH the title
ly <- grid.layout(ncol=1, nrow=2,
widths=unit(0.9, 'grobwidth', data=legendGrob))
## Create a frame to host the original legend and the title
fg <- frameGrob(ly, name=paste('legendTitle', title, sep='_'))
## Add the grobs to the frame
pg <- packGrob(fg, titleGrob, row=2)
pg <- packGrob(pg, legendGrob, row=1)
}
## Access each trellis object from pList...
for (i in seq_len(nClasses)){
## extract the legend (automatically created by spplot)...
lg <- pList[[i]]$legend$right
## ... and add the addTitle function to the legend component of each trellis object
pList[[i]]$legend$right <- list(fun='addTitle',
args=list(legend=lg, title=classes[i]))
}
## List of legends
legendList <- lapply(pList, function(x){
lg <- x$legend$right
clKey <- eval(as.call(c(as.symbol(lg$fun), lg$args)))
clKey
})
## Function to pack the list of legends in a unique legend
## Adapted from latticeExtra::: mergedTrellisLegendGrob
packLegend <- function(legendList){
N <- length(legendList)
ly <- grid.layout(nrow = 1, ncol = N)
g <- frameGrob(layout = ly, name = "mergedLegend")
for (i in 1:N) g <- packGrob(g, legendList[[i]], col = i)
g
}
## The legend of p will include all the legends
p$legend$right <- list(fun = 'packLegend', args = list(legendList = legendList))
p
dev.off()