This directory contains steps and artifacts to run inference with TensorFlow BERT and ResNet50 sample workloads on Graphene. Specifically, both these examples use pre-trained models to run inference. We tested this on Ubuntu 18.04 and uses the package version with Python 3.6.
BERT is a method of pre-training language representations and then use that trained model for downstream NLP tasks like 'question answering'. BERT is an unsupervised, deeply birectional system for pre-training NLP. In this BERT sample, we use 'BERT-Large, Uncased (Whole Word Masking)' model and perform int8 inference. More details about BERT can be found at https://github.com/google-research/bert.
ResNet50 is a convolutional neural network that is 50 layers deep. In this ResNet50(v1.5) sample, we use a pre-trained model and perform int8 inference. More details about ResNet50 can be found at https://github.com/IntelAI/models/tree/icx-launch-public/benchmarks/image_recognition/tensorflow/resnet50v1_5.
Linux systems have CPU frequency scaling governor that helps the system to scale the CPU frequency to achieve best performance or to save power based on the requirement. To achieve the best peformance, please set the CPU frequency scaling governor to performance mode.
for ((i=0; i<$(nproc); i++)); do echo 'performance' > /sys/devices/system/cpu/cpu$i/cpufreq/scaling_governor; done
- Install python3.6.
- Upgrade pip/pip3.
- Install tensorflow using
pip install intel-tensorflow-avx512==2.4.0
or by downloading whl package from https://pypi.org/project/intel-tensorflow-avx512/2.4.0/#files.
- To build BERT sample, do
cd BERT
or to build ResNet50 sample, docd ResNet50
. - To clean the sample, do
make clean
- To clean and remove downloaded models and datasets, do
make distclean
- To build the non-SGX version, do
make PYTHONDISTPATH=path_to_python_dist_packages/
- To build the SGX version, do
make PYTHONDISTPATH=path_to_python_dist_packages/ SGX=1
- Typically, path_to_python_dist_packages is '/usr/local/lib/python3.6/dist-packages', but can change based on python's installation directory.
WARNING: Building BERT sample downloads about 5GB of data.
- To run int8 inference on graphene-sgx(SGX version)
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 graphene-sgx \
./python models/models/language_modeling/tensorflow/bert_large/inference/run_squad.py \
--init_checkpoint=data/bert_large_checkpoints/model.ckpt-3649 \
--vocab_file=data/wwm_uncased_L-24_H-1024_A-16/vocab.txt \
--bert_config_file=data/wwm_uncased_L-24_H-1024_A-16/bert_config.json \
--predict_file=data/wwm_uncased_L-24_H-1024_A-16/dev-v1.1.json \
--precision=int8 \
--output_dir=output/bert-squad-output \
--predict_batch_size=32 \
--experimental_gelu=True \
--optimized_softmax=True \
--input_graph=data/asymmetric_per_channel_bert_int8.pb \
--do_predict=True --mode=benchmark \
--inter_op_parallelism_threads=1 \
--intra_op_parallelism_threads=36
- To run int8 inference on graphene-direct(non-SGX version)
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 \
graphene-direct ./python models/models/language_modeling/tensorflow/bert_large/inference/run_squad.py \
--init_checkpoint=data/bert_large_checkpoints/model.ckpt-3649 \
--vocab_file=data/wwm_uncased_L-24_H-1024_A-16/vocab.txt \
--bert_config_file=data/wwm_uncased_L-24_H-1024_A-16/bert_config.json \
--predict_file=data/wwm_uncased_L-24_H-1024_A-16/dev-v1.1.json \
--precision=int8 \
--output_dir=output/bert-squad-output \
--predict_batch_size=32 \
--experimental_gelu=True \
--optimized_softmax=True \
--input_graph=data/asymmetric_per_channel_bert_int8.pb \
--do_predict=True \
--mode=benchmark \
--inter_op_parallelism_threads=1 \
--intra_op_parallelism_threads=36
- To run int8 inference on native baremetal(outside graphene)
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 python3.6 \
models/models/language_modeling/tensorflow/bert_large/inference/run_squad.py \
--init_checkpoint=data/bert_large_checkpoints/model.ckpt-3649 \
--vocab_file=data/wwm_uncased_L-24_H-1024_A-16/vocab.txt \
--bert_config_file=data/wwm_uncased_L-24_H-1024_A-16/bert_config.json \
--predict_file=data/wwm_uncased_L-24_H-1024_A-16/dev-v1.1.json \
--precision=int8 --output_dir=output/bert-squad-output \
--predict_batch_size=32 \
--experimental_gelu=True \
--optimized_softmax=True \
--input_graph=data/asymmetric_per_channel_bert_int8.pb \
--do_predict=True \
--mode=benchmark \
--inter_op_parallelism_threads=1 \
--intra_op_parallelism_threads=36
- Above commands are for a 36 core system. Please set the following options accordingly for optimal
performance.
- OMP_NUM_THREADS='Core(s) per socket', OMP_NUM_THREADS sets the maximum number of threads to use for OpenMP parallel regions.
- taskset to 'Core(s) per socket'
- intra_op_parallelism_threads='Core(s) per socket'
- If hyperthreading is enabled : use
KMP_AFFINITY=granularity=fine,verbose,compact,1,0
- If hyperthreading is disabled : use
KMP_AFFINITY=granularity=fine,verbose,compact
- KMP_AFFINITY binds OpenMP threads to physical processing units.
NOTE: To get 'Core(s) per socket', do
lscpu | grep 'Core(s) per socket'
- To run inference on graphene-sgx(SGX version)
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 graphene-sgx \
./python models/models/image_recognition/tensorflow/resnet50v1_5/inference/eval_image_classifier_inference.py \
--input-graph=resnet50v1_5_int8_pretrained_model.pb \
--num-inter-threads=1 \
--num-intra-threads=36 \
--batch-size=32 \
--warmup-steps=50 \
--steps=500
- To run inference on graphene-direct(non-SGX version)
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 graphene-direct \
./python models/models/image_recognition/tensorflow/resnet50v1_5/inference/eval_image_classifier_inference.py \
--input-graph=resnet50v1_5_int8_pretrained_model.pb \
--num-inter-threads=1 \
--num-intra-threads=36 \
--batch-size=32 \
--warmup-steps=50 \
--steps=500
- To run inference on native baremetal(outside graphene)
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 python3.6 \
models/models/image_recognition/tensorflow/resnet50v1_5/inference/eval_image_classifier_inference.py \
--input-graph=resnet50v1_5_int8_pretrained_model.pb \
--num-inter-threads=1 \
--num-intra-threads=36 \
--batch-size=32 \
--warmup-steps=50 \
--steps=500
- Above commands are for a 36 core system. Please set the following options accordingly for optimal
performance.
- OMP_NUM_THREADS='Core(s) per socket', OMP_NUM_THREADS sets the maximum number of threads to use for OpenMP parallel regions.
- taskset to 'Core(s) per socket'
- num-intra-threads='Core(s) per socket'
- If hyperthreading is enabled : use
KMP_AFFINITY=granularity=fine,verbose,compact,1,0
- If hyperthreading is disabled : use
KMP_AFFINITY=granularity=fine,verbose,compact
- KMP_AFFINITY binds OpenMP threads to physical processing units.
- The options batch-size, warmup-steps and steps can be varied.
NOTE: To get 'Core(s) per socket', do
lscpu | grep 'Core(s) per socket'
- Preheat manifest option pre-faults the enclave memory and moves the performance penalty to
graphene-sgx invocation (before the workload starts execution).
To use preheat option, add
sgx.preheat_enclave = 1
to the manifest template. - TCMalloc and mimalloc are memory allocator libraries from Google and Microsoft that can help
improve performance significantly based on the workloads. At any point, only one of these
allocators can be used.
- TCMalloc (Please update the binary location and name if different from default)
- Install tcmalloc :
sudo apt-get install google-perftools
- Add the following lines in the manifest template and rebuild the sample.
- Install tcmalloc :
- TCMalloc (Please update the binary location and name if different from default)
loader.env.LD_PRELOAD = "/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4"
sgx.trusted_files.libtcmalloc = "file:/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4"
sgx.trusted_files.libunwind = "file:/usr/lib/x86_64-linux-gnu/libunwind.so.8"
- mimalloc (Please update the binary location and name if different from default)
- Install mimalloc using the steps from https://github.com/microsoft/mimalloc
- Add the following lines in the manifest template and rebuild the sample.
loader.env.LD_PRELOAD = "/usr/local/lib/mimalloc-1.7/libmimalloc.so.1.7"
sgx.trusted_files.libmimalloc = "file:/usr/local/lib/mimalloc-1.7/libmimalloc.so.1.7"