-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
175 lines (131 loc) · 5.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from models import E1, E2, Decoder, Disc
from utils import save_imgs, save_model, load_model
from utils import CustomDataset
import argparse
def train(args):
if not os.path.exists(args.out):
os.makedirs(args.out)
_iter = 0
comp_transform = transforms.Compose([
transforms.CenterCrop(args.crop),
transforms.Resize(args.resize),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
domA_train = CustomDataset(os.path.join(args.root, 'trainA.txt'), transform=comp_transform)
domB_train = CustomDataset(os.path.join(args.root, 'trainB.txt'), transform=comp_transform)
A_label = torch.full((args.bs,), 1)
B_label = torch.full((args.bs,), 0)
B_separate = torch.full((args.bs, args.sep * (args.resize // 64) * (args.resize // 64)), 0)
e1 = E1(args.sep, args.resize // 64)
e2 = E2(args.sep, args.resize // 64)
decoder = Decoder(args.resize // 64)
disc = Disc(args.sep, args.resize // 64)
mse = nn.MSELoss()
bce = nn.BCELoss()
if torch.cuda.is_available():
e1 = e1.cuda()
e2 = e2.cuda()
decoder = decoder.cuda()
disc = disc.cuda()
A_label = A_label.cuda()
B_label = B_label.cuda()
B_separate = B_separate.cuda()
mse = mse.cuda()
bce = bce.cuda()
ae_params = list(e1.parameters()) + list(e2.parameters()) + list(decoder.parameters())
ae_optimizer = optim.Adam(ae_params, lr=args.lr, betas=(0.5, 0.999))
disc_params = disc.parameters()
disc_optimizer = optim.Adam(disc_params, lr=args.disclr, betas=(0.5, 0.999))
if args.load != '':
save_file = os.path.join(args.load, 'checkpoint')
_iter = load_model(save_file, e1, e2, decoder, ae_optimizer, disc, disc_optimizer)
e1 = e1.train()
e2 = e2.train()
decoder = decoder.train()
disc = disc.train()
print('Started training...')
while True:
domA_loader = torch.utils.data.DataLoader(domA_train, batch_size=args.bs,
shuffle=True, num_workers=6)
domB_loader = torch.utils.data.DataLoader(domB_train, batch_size=args.bs,
shuffle=True, num_workers=6)
if _iter >= args.iters:
break
for domA_img, domB_img in zip(domA_loader, domB_loader):
if domA_img.size(0) != args.bs or domB_img.size(0) != args.bs:
break
domA_img = Variable(domA_img)
domB_img = Variable(domB_img)
if torch.cuda.is_available():
domA_img = domA_img.cuda()
domB_img = domB_img.cuda()
domA_img = domA_img.view((-1, 3, args.resize, args.resize))
domB_img = domB_img.view((-1, 3, args.resize, args.resize))
ae_optimizer.zero_grad()
A_common = e1(domA_img)
A_separate = e2(domA_img)
A_encoding = torch.cat([A_common, A_separate], dim=1)
B_common = e1(domB_img)
B_encoding = torch.cat([B_common, B_separate], dim=1)
A_decoding = decoder(A_encoding)
B_decoding = decoder(B_encoding)
loss = mse(A_decoding, domA_img) + mse(B_decoding, domB_img)
if args.discweight > 0:
preds_A = disc(A_common)
preds_B = disc(B_common)
loss += args.discweight * (bce(preds_A, B_label) + bce(preds_B, B_label))
loss.backward()
torch.nn.utils.clip_grad_norm_(ae_params, 5)
ae_optimizer.step()
if args.discweight > 0:
disc_optimizer.zero_grad()
A_common = e1(domA_img)
B_common = e1(domB_img)
disc_A = disc(A_common)
disc_B = disc(B_common)
loss = bce(disc_A, A_label) + bce(disc_B, B_label)
loss.backward()
torch.nn.utils.clip_grad_norm_(disc_params, 5)
disc_optimizer.step()
if _iter % args.progress_iter == 0:
print('Outfile: %s <<>> Iteration %d' % (args.out, _iter))
if _iter % args.display_iter == 0:
e1 = e1.eval()
e2 = e2.eval()
decoder = decoder.eval()
save_imgs(args, e1, e2, decoder, _iter)
e1 = e1.train()
e2 = e2.train()
decoder = decoder.train()
if _iter % args.save_iter == 0:
save_file = os.path.join(args.out, 'checkpoint')
save_model(save_file, e1, e2, decoder, ae_optimizer, disc, disc_optimizer, _iter)
_iter += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--root', default='')
parser.add_argument('--out', default='out')
parser.add_argument('--lr', type=float, default=0.0002)
parser.add_argument('--bs', type=int, default=32)
parser.add_argument('--iters', type=int, default=1250000)
parser.add_argument('--resize', type=int, default=128)
parser.add_argument('--crop', type=int, default=178)
parser.add_argument('--sep', type=int, default=25)
parser.add_argument('--discweight', type=float, default=0.001)
parser.add_argument('--disclr', type=float, default=0.0002)
parser.add_argument('--progress_iter', type=int, default=100)
parser.add_argument('--display_iter', type=int, default=5000)
parser.add_argument('--save_iter', type=int, default=10000)
parser.add_argument('--load', default='')
parser.add_argument('--num_display', type=int, default=12)
args = parser.parse_args()
train(args)