From 90c4114707c3f9d40da7e97431d5cd3e0b9ed502 Mon Sep 17 00:00:00 2001 From: lishensuo <80585985+lishensuo@users.noreply.github.com> Date: Tue, 1 Oct 2024 21:26:49 +0800 Subject: [PATCH] V2 publication --- R/vis_pancan_value.R | 2 +- R/zzz.R | 11 +++++--- README.md | 3 +- .../06_tpc_func/modules-z-filter-sample.R | 11 ++++++-- inst/shinyapp/shiny-doc/citation2.md | 28 ++++++++++++++++++- man/vis_unicox_tree.Rd | 2 +- 6 files changed, 47 insertions(+), 10 deletions(-) diff --git a/R/vis_pancan_value.R b/R/vis_pancan_value.R index ced41709..a93732d3 100644 --- a/R/vis_pancan_value.R +++ b/R/vis_pancan_value.R @@ -223,7 +223,7 @@ vis_toil_TvsN <- function(Gene = "TP53", Mode = c("Boxplot", "Violinplot"), #' #' @inheritParams vis_toil_TvsN #' @param measure a survival measure, e.g. "OS". -#' @param data_type choose gene profile type, including "mRNA","transcript","methylation","miRNA","protein","cnv" +#' @param data_type choose gene profile type, including "mRNA","transcript","methylation","miRNA","protein","mutation","cnv" #' @param use_optimal_cutoff use `surv_cutpoint` from survminer package for #' thresholding samples in each cancer type. #' @return a `ggplot` object diff --git a/R/zzz.R b/R/zzz.R index 1b55a2f4..2220d483 100644 --- a/R/zzz.R +++ b/R/zzz.R @@ -7,11 +7,14 @@ Project URL: https://github.com/openbiox/UCSCXenaShiny Usages: https://openbiox.github.io/UCSCXenaShiny/ If you use it in published research, please cite: - Shixiang Wang, Yi Xiong, Longfei Zhao, Kai Gu, Yin Li, Fei Zhao, Jianfeng Li, - Mingjie Wang, Haitao Wang, Ziyu Tao, Tao Wu, Yichao Zheng, Xuejun Li, Xue-Song Liu, - UCSCXenaShiny: An R/CRAN Package for Interactive Analysis of UCSC Xena Data, - Bioinformatics, 2021;, btab561, https://doi.org/10.1093/bioinformatics/btab561. + Shensuo Li, Yuzhong Peng, Minjun Chen, Yankun Zhao, Yi Xiong, Jianfeng Li, Peng Luo, + Haitao Wang, Fei Zhao, Qi Zhao, Yanru Cui, Sujun Chen, Jian-Guo Zhou, Shixiang Wang, + Facilitating integrative and personalized oncology omics analysis with UCSCXenaShiny, + Communications Biology, 1200 (2024), https://doi.org/10.1038/s42003-024-06891-2 ========================================================================================= --Enjoy it--") base::packageStartupMessage(msg) } + + + diff --git a/README.md b/README.md index 2833ba74..fb6310f3 100644 --- a/README.md +++ b/README.md @@ -24,7 +24,8 @@ Please cite any of the following articles when you used **UCSCXenaShiny** in you **V2** -- Li S, et al. UCSCXenaShiny v2: Facilitating Integrative and Personalized Oncology Omics Analysis. 2024 (In preparation) +- Shensuo Li, Yuzhong Peng, Minjun Chen, Yankun Zhao, Yi Xiong, Jianfeng Li, Peng Luo, Haitao Wang, Fei Zhao, Qi Zhao, Yanru Cui, Sujun Chen, Jian-Guo Zhou, Shixiang Wang, Facilitating integrative and personalized oncology omics analysis with UCSCXenaShiny, Communications Biology, 1200 (2024), https://doi.org/10.1038/s42003-024-06891-2 + **V1** diff --git a/inst/shinyapp/modules/06_tpc_func/modules-z-filter-sample.R b/inst/shinyapp/modules/06_tpc_func/modules-z-filter-sample.R index 607a676b..799e3c94 100644 --- a/inst/shinyapp/modules/06_tpc_func/modules-z-filter-sample.R +++ b/inst/shinyapp/modules/06_tpc_func/modules-z-filter-sample.R @@ -273,7 +273,9 @@ filter_samples_Server = function(input, output, session, database="toil", #id_op `Tumor index` = input$tumor_index, `Immune Infiltration` = input$immune_infiltration, `Pathway activity` = input$pathway_activity, - `Custom metadata` = input$custom_metadata + # `Custom metadata` = input$custom_metadata + `Phenotype data` = input$phenotype_data + ) }) add_level3 = reactive({ @@ -282,7 +284,10 @@ filter_samples_Server = function(input, output, session, database="toil", #id_op `Tumor index` = input$tumor_index_id, `Immune Infiltration` = input$immune_infiltration_id, `Pathway activity` = input$pathway_activity_id, - `Custom metadata` = input$custom_metadata_id + # `Custom metadata` = input$custom_metadata_id + `Phenotype data` = input$phenotype_data_id + + ) }) @@ -320,6 +325,8 @@ filter_samples_Server = function(input, output, session, database="toil", #id_op L1_x = str_split(add_phes$name[[i]], "--")[[1]][1] # Level-1 L2_x = str_split(add_phes$name[[i]], "--")[[1]][2] # Level-2 L3_x = str_split(add_phes$name[[i]], "--")[[1]][3] # Level-3 + print(add_phes$name[[i]]) + print(c(L1_x, L2_x, L3_x)) if(is.null(opt_pancan)){ opt_pancan = .opt_pancan diff --git a/inst/shinyapp/shiny-doc/citation2.md b/inst/shinyapp/shiny-doc/citation2.md index 80bec49c..d882f297 100644 --- a/inst/shinyapp/shiny-doc/citation2.md +++ b/inst/shinyapp/shiny-doc/citation2.md @@ -1,6 +1,32 @@

UCSCXenaShiny v2

-- The manuscript is preparing to submit. Please be waiting for some time. +- Shensuo Li, Yuzhong Peng, Minjun Chen, Yankun Zhao, Yi Xiong, Jianfeng Li, Peng Luo, Haitao Wang, Fei Zhao, Qi Zhao, Yanru Cui, Sujun Chen, Jian-Guo Zhou, Shixiang Wang, Facilitating integrative and personalized oncology omics analysis with UCSCXenaShiny, Communications Biology, 1200 (2024), https://doi.org/10.1038/s42003-024-06891-2 + +- PMID: [39341906](https://pubmed.ncbi.nlm.nih.gov/39341906/) +- Bibtex format:  + +``` +@ARTICLE{Li2024-yd, + title = "Facilitating integrative and personalized oncology omics analysis with UCSCXenaShiny", + author = "Li, Shensuo and Peng, Yuzhong and Chen, Minjun and Zhao, Yankun and Xiong, Yi and Li, Jianfeng and Luo, Peng and Wang, Haitao and Zhao, Fei and Zhao, Qi and Cui, Yanru and Chen, Sujun and Zhou, Jian-Guo and Wang, Shixiang", + abstract = "The continuous generation of multi-omics and phenotype data is propelling advancements in precision oncology. UCSCXenaShiny was developed as an interactive tool for exploring thousands of cancer datasets available on UCSC Xena. However, its capacity for comprehensive and personalized pan-cancer data analysis is being challenged by the growing demands. Here, we introduce UCSCXenaShiny v2, a milestone update through a variety of improvements. Firstly, by integrating multidimensional data and implementing adaptable sample settings, we create a suite of robust TPC (TCGA, PCAWG, CCLE) analysis pipelines. These pipelines empower users to conduct in-depth analyses of correlation, comparison, and survival in three modes: Individual, Pan-cancer and Batch screen. Additionally, the tool includes download interfaces that enable users to access diverse data and outcomes, several features also facilitate the joint analysis of drug sensitivity and multi-omics of cancer cell lines. UCSCXenaShiny v2 is an open-source R package and a web application, freely accessible at https://github.com/openbiox/UCSCXenaShiny.", + journal = "Commun. Biol.", + volume = 7, + number = 1, + pages = "1200", + month = sep, + year = 2024, + language = "en" +} +``` + + + + + + + +
diff --git a/man/vis_unicox_tree.Rd b/man/vis_unicox_tree.Rd index a4584514..4047b14a 100644 --- a/man/vis_unicox_tree.Rd +++ b/man/vis_unicox_tree.Rd @@ -19,7 +19,7 @@ genomic signature (\code{"TP53 + 2 * KRAS - 1.3 * PTEN"}).} \item{measure}{a survival measure, e.g. "OS".} -\item{data_type}{choose gene profile type, including "mRNA","transcript","methylation","miRNA","protein","cnv"} +\item{data_type}{choose gene profile type, including "mRNA","transcript","methylation","miRNA","protein","mutation","cnv"} \item{use_optimal_cutoff}{use \code{surv_cutpoint} from survminer package for thresholding samples in each cancer type.}