-
Notifications
You must be signed in to change notification settings - Fork 9.8k
/
Copy pathHow_to_call_functions_with_chat_models.ipynb
894 lines (894 loc) · 31.5 KB
/
How_to_call_functions_with_chat_models.ipynb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "3e67f200",
"metadata": {},
"source": [
"# How to call functions with chat models\n",
"\n",
"This notebook covers how to use the Chat Completions API in combination with external functions to extend the capabilities of GPT models.\n",
"\n",
"`tools` is an optional parameter in the Chat Completion API which can be used to provide function specifications. The purpose of this is to enable models to generate function arguments which adhere to the provided specifications. Note that the API will not actually execute any function calls. It is up to developers to execute function calls using model outputs.\n",
"\n",
"Within the `tools` parameter, if the `functions` parameter is provided then by default the model will decide when it is appropriate to use one of the functions. The API can be forced to use a specific function by setting the `tool_choice` parameter to `{\"type\": \"function\", \"function\": {\"name\": \"my_function\"}}`. The API can also be forced to not use any function by setting the `tool_choice` parameter to `\"none\"`. If a function is used, the output will contain `\"finish_reason\": \"tool_calls\"` in the response, as well as a `tool_calls` object that has the name of the function and the generated function arguments.\n",
"\n",
"### Overview\n",
"\n",
"This notebook contains the following 2 sections:\n",
"\n",
"- **How to generate function arguments:** Specify a set of functions and use the API to generate function arguments.\n",
"- **How to call functions with model generated arguments:** Close the loop by actually executing functions with model generated arguments."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "64c85e26",
"metadata": {},
"source": [
"## How to generate function arguments"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "80e71f33",
"metadata": {
"pycharm": {
"is_executing": true
}
},
"outputs": [],
"source": [
"!pip install scipy --quiet\n",
"!pip install tenacity --quiet\n",
"!pip install tiktoken --quiet\n",
"!pip install termcolor --quiet\n",
"!pip install openai --quiet"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "dab872c5",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:41:58.148850Z",
"start_time": "2024-07-12T22:41:58.133412Z"
}
},
"outputs": [],
"source": [
"import json\n",
"from openai import OpenAI\n",
"from tenacity import retry, wait_random_exponential, stop_after_attempt\n",
"from termcolor import colored \n",
"\n",
"GPT_MODEL = \"gpt-4o\"\n",
"client = OpenAI()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "69ee6a93",
"metadata": {},
"source": [
"### Utilities\n",
"\n",
"First let's define a few utilities for making calls to the Chat Completions API and for maintaining and keeping track of the conversation state."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "745ceec5",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:41:59.531820Z",
"start_time": "2024-07-12T22:41:59.529870Z"
}
},
"outputs": [],
"source": [
"@retry(wait=wait_random_exponential(multiplier=1, max=40), stop=stop_after_attempt(3))\n",
"def chat_completion_request(messages, tools=None, tool_choice=None, model=GPT_MODEL):\n",
" try:\n",
" response = client.chat.completions.create(\n",
" model=model,\n",
" messages=messages,\n",
" tools=tools,\n",
" tool_choice=tool_choice,\n",
" )\n",
" return response\n",
" except Exception as e:\n",
" print(\"Unable to generate ChatCompletion response\")\n",
" print(f\"Exception: {e}\")\n",
" return e\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c4d1c99f",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:00.463896Z",
"start_time": "2024-07-12T22:42:00.461258Z"
}
},
"outputs": [],
"source": [
"def pretty_print_conversation(messages):\n",
" role_to_color = {\n",
" \"system\": \"red\",\n",
" \"user\": \"green\",\n",
" \"assistant\": \"blue\",\n",
" \"function\": \"magenta\",\n",
" }\n",
" \n",
" for message in messages:\n",
" if message[\"role\"] == \"system\":\n",
" print(colored(f\"system: {message['content']}\\n\", role_to_color[message[\"role\"]]))\n",
" elif message[\"role\"] == \"user\":\n",
" print(colored(f\"user: {message['content']}\\n\", role_to_color[message[\"role\"]]))\n",
" elif message[\"role\"] == \"assistant\" and message.get(\"function_call\"):\n",
" print(colored(f\"assistant: {message['function_call']}\\n\", role_to_color[message[\"role\"]]))\n",
" elif message[\"role\"] == \"assistant\" and not message.get(\"function_call\"):\n",
" print(colored(f\"assistant: {message['content']}\\n\", role_to_color[message[\"role\"]]))\n",
" elif message[\"role\"] == \"function\":\n",
" print(colored(f\"function ({message['name']}): {message['content']}\\n\", role_to_color[message[\"role\"]]))\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "29d4e02b",
"metadata": {},
"source": [
"### Basic concepts\n",
"\n",
"Let's create some function specifications to interface with a hypothetical weather API. We'll pass these function specification to the Chat Completions API in order to generate function arguments that adhere to the specification."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d2e25069",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:01.676606Z",
"start_time": "2024-07-12T22:42:01.674348Z"
}
},
"outputs": [],
"source": [
"tools = [\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
" },\n",
" \"format\": {\n",
" \"type\": \"string\",\n",
" \"enum\": [\"celsius\", \"fahrenheit\"],\n",
" \"description\": \"The temperature unit to use. Infer this from the users location.\",\n",
" },\n",
" },\n",
" \"required\": [\"location\", \"format\"],\n",
" },\n",
" }\n",
" },\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"get_n_day_weather_forecast\",\n",
" \"description\": \"Get an N-day weather forecast\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
" },\n",
" \"format\": {\n",
" \"type\": \"string\",\n",
" \"enum\": [\"celsius\", \"fahrenheit\"],\n",
" \"description\": \"The temperature unit to use. Infer this from the users location.\",\n",
" },\n",
" \"num_days\": {\n",
" \"type\": \"integer\",\n",
" \"description\": \"The number of days to forecast\",\n",
" }\n",
" },\n",
" \"required\": [\"location\", \"format\", \"num_days\"]\n",
" },\n",
" }\n",
" },\n",
"]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "bfc39899",
"metadata": {},
"source": [
"If we prompt the model about the current weather, it will respond with some clarifying questions."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "518d6827",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:03.726604Z",
"start_time": "2024-07-12T22:42:03.154689Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletionMessage(content='Sure, can you please provide me with the name of your city and state?', role='assistant', function_call=None, tool_calls=None)"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = []\n",
"messages.append({\"role\": \"system\", \"content\": \"Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.\"})\n",
"messages.append({\"role\": \"user\", \"content\": \"What's the weather like today\"})\n",
"chat_response = chat_completion_request(\n",
" messages, tools=tools\n",
")\n",
"assistant_message = chat_response.choices[0].message\n",
"messages.append(assistant_message)\n",
"assistant_message\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "4c999375",
"metadata": {},
"source": [
"Once we provide the missing information, it will generate the appropriate function arguments for us."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "23c42a6e",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:05.778263Z",
"start_time": "2024-07-12T22:42:05.277346Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletionMessage(content=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_xb7QwwNnx90LkmhtlW0YrgP2', function=Function(arguments='{\"location\":\"Glasgow, Scotland\",\"format\":\"celsius\"}', name='get_current_weather'), type='function')])"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages.append({\"role\": \"user\", \"content\": \"I'm in Glasgow, Scotland.\"})\n",
"chat_response = chat_completion_request(\n",
" messages, tools=tools\n",
")\n",
"assistant_message = chat_response.choices[0].message\n",
"messages.append(assistant_message)\n",
"assistant_message\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c14d4762",
"metadata": {},
"source": [
"By prompting it differently, we can get it to target the other function we've told it about."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fa232e54",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:07.575820Z",
"start_time": "2024-07-12T22:42:07.018764Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletionMessage(content='To provide you with the weather forecast for Glasgow, Scotland, could you please specify the number of days you would like the forecast for?', role='assistant', function_call=None, tool_calls=None)"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = []\n",
"messages.append({\"role\": \"system\", \"content\": \"Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.\"})\n",
"messages.append({\"role\": \"user\", \"content\": \"what is the weather going to be like in Glasgow, Scotland over the next x days\"})\n",
"chat_response = chat_completion_request(\n",
" messages, tools=tools\n",
")\n",
"assistant_message = chat_response.choices[0].message\n",
"messages.append(assistant_message)\n",
"assistant_message\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "6172ddac",
"metadata": {},
"source": [
"Once again, the model is asking us for clarification because it doesn't have enough information yet. In this case it already knows the location for the forecast, but it needs to know how many days are required in the forecast."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "c7d8a543",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:09.587530Z",
"start_time": "2024-07-12T22:42:08.666795Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"Choice(finish_reason='tool_calls', index=0, logprobs=None, message=ChatCompletionMessage(content=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_34PBraFdNN6KR95uD5rHF8Aw', function=Function(arguments='{\"location\":\"Glasgow, Scotland\",\"format\":\"celsius\",\"num_days\":5}', name='get_n_day_weather_forecast'), type='function')]))"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages.append({\"role\": \"user\", \"content\": \"5 days\"})\n",
"chat_response = chat_completion_request(\n",
" messages, tools=tools\n",
")\n",
"chat_response.choices[0]\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "4b758a0a",
"metadata": {},
"source": [
"#### Forcing the use of specific functions or no function"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "412f79ba",
"metadata": {},
"source": [
"We can force the model to use a specific function, for example get_n_day_weather_forecast by using the function_call argument. By doing so, we force the model to make assumptions about how to use it."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "559371b7",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:12.216712Z",
"start_time": "2024-07-12T22:42:11.714246Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletionMessage(content=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_FImGxrLowOAOszCaaQqQWmEN', function=Function(arguments='{\"location\":\"Toronto, Canada\",\"format\":\"celsius\",\"num_days\":7}', name='get_n_day_weather_forecast'), type='function')])"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# in this cell we force the model to use get_n_day_weather_forecast\n",
"messages = []\n",
"messages.append({\"role\": \"system\", \"content\": \"Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.\"})\n",
"messages.append({\"role\": \"user\", \"content\": \"Give me a weather report for Toronto, Canada.\"})\n",
"chat_response = chat_completion_request(\n",
" messages, tools=tools, tool_choice={\"type\": \"function\", \"function\": {\"name\": \"get_n_day_weather_forecast\"}}\n",
")\n",
"chat_response.choices[0].message"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "a7ab0f58",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:14.264601Z",
"start_time": "2024-07-12T22:42:13.001306Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletionMessage(content=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_n84kYFqjNFDPNGDEnjnrd2KC', function=Function(arguments='{\"location\": \"Toronto, Canada\", \"format\": \"celsius\"}', name='get_current_weather'), type='function'), ChatCompletionMessageToolCall(id='call_AEs3AFhJc9pn42hWSbHTaIDh', function=Function(arguments='{\"location\": \"Toronto, Canada\", \"format\": \"celsius\", \"num_days\": 3}', name='get_n_day_weather_forecast'), type='function')])"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# if we don't force the model to use get_n_day_weather_forecast it may not\n",
"messages = []\n",
"messages.append({\"role\": \"system\", \"content\": \"Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.\"})\n",
"messages.append({\"role\": \"user\", \"content\": \"Give me a weather report for Toronto, Canada.\"})\n",
"chat_response = chat_completion_request(\n",
" messages, tools=tools\n",
")\n",
"chat_response.choices[0].message"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3bd70e48",
"metadata": {},
"source": [
"We can also force the model to not use a function at all. By doing so we prevent it from producing a proper function call."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "acfe54e6",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:16.928643Z",
"start_time": "2024-07-12T22:42:16.295006Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletionMessage(content=\"Sure, I'll get the current weather for Toronto, Canada in Celsius.\", role='assistant', function_call=None, tool_calls=None)"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = []\n",
"messages.append({\"role\": \"system\", \"content\": \"Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.\"})\n",
"messages.append({\"role\": \"user\", \"content\": \"Give me the current weather (use Celcius) for Toronto, Canada.\"})\n",
"chat_response = chat_completion_request(\n",
" messages, tools=tools, tool_choice=\"none\"\n",
")\n",
"chat_response.choices[0].message\n"
]
},
{
"cell_type": "markdown",
"id": "b616353b",
"metadata": {},
"source": [
"### Parallel Function Calling\n",
"\n",
"Newer models such as gpt-4o or gpt-3.5-turbo can call multiple functions in one turn."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "380eeb68",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:18.988762Z",
"start_time": "2024-07-12T22:42:18.041914Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[ChatCompletionMessageToolCall(id='call_ObhLiJwaHwc3U1KyB4Pdpx8y', function=Function(arguments='{\"location\": \"San Francisco, CA\", \"format\": \"fahrenheit\", \"num_days\": 4}', name='get_n_day_weather_forecast'), type='function'),\n",
" ChatCompletionMessageToolCall(id='call_5YRgeZ0MGBMFKE3hZiLouwg7', function=Function(arguments='{\"location\": \"Glasgow, SCT\", \"format\": \"celsius\", \"num_days\": 4}', name='get_n_day_weather_forecast'), type='function')]"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = []\n",
"messages.append({\"role\": \"system\", \"content\": \"Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.\"})\n",
"messages.append({\"role\": \"user\", \"content\": \"what is the weather going to be like in San Francisco and Glasgow over the next 4 days\"})\n",
"chat_response = chat_completion_request(\n",
" messages, tools=tools, model=GPT_MODEL\n",
")\n",
"\n",
"assistant_message = chat_response.choices[0].message.tool_calls\n",
"assistant_message"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b4482aee",
"metadata": {},
"source": [
"## How to call functions with model generated arguments\n",
"\n",
"In our next example, we'll demonstrate how to execute functions whose inputs are model-generated, and use this to implement an agent that can answer questions for us about a database. For simplicity we'll use the [Chinook sample database](https://www.sqlitetutorial.net/sqlite-sample-database/).\n",
"\n",
"*Note:* SQL generation can be high-risk in a production environment since models are not perfectly reliable at generating correct SQL."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f7654fef",
"metadata": {},
"source": [
"### Specifying a function to execute SQL queries\n",
"\n",
"First let's define some helpful utility functions to extract data from a SQLite database."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "30f6b60e",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:20.742187Z",
"start_time": "2024-07-12T22:42:20.737751Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Opened database successfully\n"
]
}
],
"source": [
"import sqlite3\n",
"\n",
"conn = sqlite3.connect(\"data/Chinook.db\")\n",
"print(\"Opened database successfully\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "abec0214",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:21.370623Z",
"start_time": "2024-07-12T22:42:21.368246Z"
}
},
"outputs": [],
"source": [
"def get_table_names(conn):\n",
" \"\"\"Return a list of table names.\"\"\"\n",
" table_names = []\n",
" tables = conn.execute(\"SELECT name FROM sqlite_master WHERE type='table';\")\n",
" for table in tables.fetchall():\n",
" table_names.append(table[0])\n",
" return table_names\n",
"\n",
"\n",
"def get_column_names(conn, table_name):\n",
" \"\"\"Return a list of column names.\"\"\"\n",
" column_names = []\n",
" columns = conn.execute(f\"PRAGMA table_info('{table_name}');\").fetchall()\n",
" for col in columns:\n",
" column_names.append(col[1])\n",
" return column_names\n",
"\n",
"\n",
"def get_database_info(conn):\n",
" \"\"\"Return a list of dicts containing the table name and columns for each table in the database.\"\"\"\n",
" table_dicts = []\n",
" for table_name in get_table_names(conn):\n",
" columns_names = get_column_names(conn, table_name)\n",
" table_dicts.append({\"table_name\": table_name, \"column_names\": columns_names})\n",
" return table_dicts\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "77e6e5ea",
"metadata": {},
"source": [
"Now we can use these utility functions to extract a representation of the database schema."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "0c0104cd",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:22.668456Z",
"start_time": "2024-07-12T22:42:22.665839Z"
}
},
"outputs": [],
"source": [
"database_schema_dict = get_database_info(conn)\n",
"database_schema_string = \"\\n\".join(\n",
" [\n",
" f\"Table: {table['table_name']}\\nColumns: {', '.join(table['column_names'])}\"\n",
" for table in database_schema_dict\n",
" ]\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ae73c9ee",
"metadata": {},
"source": [
"As before, we'll define a function specification for the function we'd like the API to generate arguments for. Notice that we are inserting the database schema into the function specification. This will be important for the model to know about."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "0258813a",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:24.156291Z",
"start_time": "2024-07-12T22:42:24.154372Z"
}
},
"outputs": [],
"source": [
"tools = [\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"ask_database\",\n",
" \"description\": \"Use this function to answer user questions about music. Input should be a fully formed SQL query.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"query\": {\n",
" \"type\": \"string\",\n",
" \"description\": f\"\"\"\n",
" SQL query extracting info to answer the user's question.\n",
" SQL should be written using this database schema:\n",
" {database_schema_string}\n",
" The query should be returned in plain text, not in JSON.\n",
" \"\"\",\n",
" }\n",
" },\n",
" \"required\": [\"query\"],\n",
" },\n",
" }\n",
" }\n",
"]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "da08c121",
"metadata": {},
"source": [
"### Executing SQL queries\n",
"\n",
"Now let's implement the function that will actually excute queries against the database."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "65585e74",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:25.444734Z",
"start_time": "2024-07-12T22:42:25.442757Z"
}
},
"outputs": [],
"source": [
"def ask_database(conn, query):\n",
" \"\"\"Function to query SQLite database with a provided SQL query.\"\"\"\n",
" try:\n",
" results = str(conn.execute(query).fetchall())\n",
" except Exception as e:\n",
" results = f\"query failed with error: {e}\"\n",
" return results"
]
},
{
"cell_type": "markdown",
"id": "8f6885e9f0af5c40",
"metadata": {},
"source": [
"##### Steps to invoke a function call using Chat Completions API: \n",
"\n",
"**Step 1**: Prompt the model with content that may result in model selecting a tool to use. The description of the tools such as a function names and signature is defined in the 'Tools' list and passed to the model in API call. If selected, the function name and parameters are included in the response.<br>\n",
" \n",
"**Step 2**: Check programmatically if model wanted to call a function. If true, proceed to step 3. <br> \n",
"**Step 3**: Extract the function name and parameters from response, call the function with parameters. Append the result to messages. <br> \n",
"**Step 4**: Invoke the chat completions API with the message list to get the response. "
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "e8b7cb9cdc7a7616",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:28.395683Z",
"start_time": "2024-07-12T22:42:27.415626Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ChatCompletionMessage(content=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_wDN8uLjq2ofuU6rVx1k8Gw0e', function=Function(arguments='{\"query\":\"SELECT Album.Title, COUNT(Track.TrackId) AS TrackCount FROM Album INNER JOIN Track ON Album.AlbumId = Track.AlbumId GROUP BY Album.Title ORDER BY TrackCount DESC LIMIT 1;\"}', name='ask_database'), type='function')])\n"
]
}
],
"source": [
"# Step #1: Prompt with content that may result in function call. In this case the model can identify the information requested by the user is potentially available in the database schema passed to the model in Tools description. \n",
"messages = [{\n",
" \"role\":\"user\", \n",
" \"content\": \"What is the name of the album with the most tracks?\"\n",
"}]\n",
"\n",
"response = client.chat.completions.create(\n",
" model='gpt-4o', \n",
" messages=messages, \n",
" tools= tools, \n",
" tool_choice=\"auto\"\n",
")\n",
"\n",
"# Append the message to messages list\n",
"response_message = response.choices[0].message \n",
"messages.append(response_message)\n",
"\n",
"print(response_message)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "351c39def3417776",
"metadata": {
"ExecuteTime": {
"end_time": "2024-07-12T22:42:30.439519Z",
"start_time": "2024-07-12T22:42:29.799492Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The album with the most tracks is titled \"Greatest Hits,\" which contains 57 tracks.\n"
]
}
],
"source": [
"# Step 2: determine if the response from the model includes a tool call. \n",
"tool_calls = response_message.tool_calls\n",
"if tool_calls:\n",
" # If true the model will return the name of the tool / function to call and the argument(s) \n",
" tool_call_id = tool_calls[0].id\n",
" tool_function_name = tool_calls[0].function.name\n",
" tool_query_string = json.loads(tool_calls[0].function.arguments)['query']\n",
"\n",
" # Step 3: Call the function and retrieve results. Append the results to the messages list. \n",
" if tool_function_name == 'ask_database':\n",
" results = ask_database(conn, tool_query_string)\n",
" \n",
" messages.append({\n",
" \"role\":\"tool\", \n",
" \"tool_call_id\":tool_call_id, \n",
" \"name\": tool_function_name, \n",
" \"content\":results\n",
" })\n",
" \n",
" # Step 4: Invoke the chat completions API with the function response appended to the messages list\n",
" # Note that messages with role 'tool' must be a response to a preceding message with 'tool_calls'\n",
" model_response_with_function_call = client.chat.completions.create(\n",
" model=\"gpt-4o\",\n",
" messages=messages,\n",
" ) # get a new response from the model where it can see the function response\n",
" print(model_response_with_function_call.choices[0].message.content)\n",
" else: \n",
" print(f\"Error: function {tool_function_name} does not exist\")\n",
"else: \n",
" # Model did not identify a function to call, result can be returned to the user \n",
" print(response_message.content) "
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "2d89073c",
"metadata": {},
"source": [
"## Next Steps\n",
"\n",
"See our other [notebook](How_to_call_functions_for_knowledge_retrieval.ipynb) that demonstrates how to use the Chat Completions API and functions for knowledge retrieval to interact conversationally with a knowledge base."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}