-
Notifications
You must be signed in to change notification settings - Fork 146
/
xf.py
479 lines (420 loc) · 15.5 KB
/
xf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
"""
Implementation of transformer and reshaping-based sparse transformer
"""
import functools
import math
import torch as th
from torch import nn
from torch.nn import functional as F
from lib import misc, mlp
from lib import torch_util as tu
from lib import util
SENTINEL = 0.1337
def attention(
Q_bte,
K_bTe,
V_bTe,
dtype,
mask=True,
extra_btT=None,
maxlen=None,
check_sentinel=False,
use_muP_factor=False,
):
"""
performs softmax(Q*K)*V operation
t : output (write) time axis, possibly size=1 for just the last timestep
T : input (read) time axis
t < T is OK
'check_sentinel' is used when you want to make it impossible to attend to certain keys.
All keys where every value is equal to the constant SENTINEL will be ignored.
Currently this is only used by StridedAttn.
"""
assert Q_bte.dtype == K_bTe.dtype == dtype, f"{Q_bte.dtype}, {K_bTe.dtype}, {dtype} must all match"
e = Q_bte.shape[2]
if check_sentinel:
invalid = (K_bTe == SENTINEL).int().sum(dim=-1) == e
invalid = misc.reshape(invalid, "b, T", "b, 1, T")
if isinstance(mask, th.Tensor):
bias = (~mask).float() * -1e9
elif mask:
bias = get_attn_bias_cached(Q_bte.shape[1], K_bTe.shape[1], maxlen=maxlen, device=Q_bte.device, dtype=th.float32)
else:
bias = Q_bte.new_zeros((), dtype=th.float32)
if extra_btT is not None:
bias = bias + extra_btT
# Equivalent to bias + (1 / math.sqrt(e)) * th.einsum("bte,bpe->btp", Q_bte, K_bte)
# but faster:
logit_btT = th.baddbmm(
bias,
Q_bte.float(),
K_bTe.float().transpose(-1, -2),
alpha=(1 / e) if use_muP_factor else (1 / math.sqrt(e)),
)
if check_sentinel:
logit_btT = logit_btT - 1e9 * invalid.float()
W_btT = th.softmax(logit_btT, dim=2).to(dtype)
if callable(V_bTe):
# This is used by the sharded video model to defer waiting on
# the broadcast of the values until they're needed
V_bTe = V_bTe()
# th.einsum only lets you use lowercase letters, so 'p' for 'past'
# means 'T'
A_bte = th.einsum("btp,bpe->bte", W_btT, V_bTe)
return A_bte
class Attn:
"""
Defines an attention mechanism
All the mechanisms here can be defined by two operations:
1. preprocessing Q,K,V,R[=relative attention query]
to move axes from embedding dimension to
batch dimension, and possibly doing shifts.
2. postprocessing the final result to move axes back to embedding
axis.
"""
def __init__(self, mask, maxlen):
self.mask = mask
self.maxlen = maxlen
def preproc_qkv(self, Q_bte, K_bte, V_bte):
raise NotImplementedError
def preproc_r(self, R_btn):
raise NotImplementedError
def split_heads(x_bte, h):
b, t, e = x_bte.shape
assert e % h == 0, "Embsize must be divisible by number of heads"
q = e // h
x_bthq = x_bte.reshape((b, t, h, q))
x_bhtq = misc.transpose(x_bthq, "bthq", "bhtq")
x_Btq = x_bhtq.reshape((b * h, t, q))
return x_Btq
class All2All(Attn):
def __init__(self, nhead, maxlen, mask=True, head_dim=None):
super().__init__(mask=mask, maxlen=maxlen)
assert (nhead is None) != (head_dim is None), "exactly one of nhead and head_dim must be specified"
self.h = nhead
self.head_dim = head_dim
def preproc_qkv(self, *xs):
q = xs[0].shape[-1]
for x in xs:
assert x.shape[-1] == q, "embedding dimensions do not match"
h = self.h or misc.exact_div(q, self.head_dim)
postproc = functools.partial(self.postproc_a, h=h)
return (postproc, *tuple(split_heads(x, h) for x in xs))
def preproc_r(self, R_btn):
_, ret = self.preproc_qkv(R_btn)
return ret
def postproc_a(self, A_Btq, h):
B, t, q = A_Btq.shape
b = B // h
A_bhtq = A_Btq.reshape((b, h, t, q))
A_bthq = misc.transpose(A_bhtq, "bhtq", "bthq")
A_bte = A_bthq.reshape((b, t, h * q))
return A_bte
def _required_padding(dim, target_div):
if dim % target_div == 0:
return 0
else:
return target_div - dim % target_div
class StridedAttn(Attn):
def __init__(self, nhead, stride, maxlen, mask=True):
super().__init__(mask=mask, maxlen=maxlen)
self.h = nhead
self.stride = stride
def _preproc(self, x, name, Q_t=None, Q_pad=None):
x, undo = misc.reshape_undo(x, "b, t*stride, e", "b, 1, t, stride*e", stride=self.stride)
if name == "Q":
Q_pad = _required_padding(x.shape[2], self.maxlen)
original_t = x.shape[2]
x = F.pad(x, (0, 0, 0, Q_pad), value=SENTINEL)
undo = misc.compose_undo(undo, lambda x: x[:, :, :original_t])
if name == "Q":
Q_t = x.shape[2]
assert Q_t % self.maxlen == 0, f"{Q_t} % {self.maxlen} != 0"
else:
required_len = Q_t + self.maxlen
if x.shape[2] < required_len:
x = F.pad(x, (0, 0, required_len - x.shape[2], 0), value=SENTINEL)
assert x.shape[2] >= required_len
back = x[:, :, -Q_t - self.maxlen : -self.maxlen]
front = x[:, :, -Q_t:]
x = th.cat([back, front], dim=1)
_, _, t, _ = x.shape
assert t == Q_t, f"{t} != {Q_t}"
x, undo = misc.reshape_undo(
x,
"b, pad_shift, t*maxlen, stride*h*q",
"b, pad_shift, t, maxlen, stride, h, q",
maxlen=self.maxlen,
h=self.h,
stride=self.stride,
undo=undo,
)
x, undo = misc.transpose_undo(x, "bptmshq", "bthspmq", undo=undo)
x, undo = misc.reshape_undo(
x,
"b, t, h, stride, pad_shift, maxlen, q",
"b*t*h*stride, pad_shift*maxlen, q",
undo=undo,
)
if name == "Q":
return x, undo, Q_t, Q_pad
else:
return x
def preproc_qkv(self, Q_bte, K_bte, V_bte):
pad = _required_padding(Q_bte.shape[1], self.stride)
if pad:
Q_bte = F.pad(Q_bte, (0, 0, 0, pad), value=SENTINEL)
K_bte = F.pad(K_bte, (0, 0, 0, pad), value=SENTINEL) if K_bte is not None else None
V_bte = F.pad(V_bte, (0, 0, 0, pad), value=SENTINEL) if V_bte is not None else None
undo = lambda x, pad=pad: x[:, :-pad]
else:
undo = None
if K_bte is not None:
pad = _required_padding(K_bte.shape[1], self.stride)
if pad:
K_bte = F.pad(K_bte, (0, 0, pad, 0), value=SENTINEL)
V_bte = F.pad(V_bte, (0, 0, pad, 0), value=SENTINEL)
assert Q_bte.shape[1] % self.stride == 0
assert K_bte is None or K_bte.shape[1] % self.stride == 0
assert V_bte is None or V_bte.shape[1] % self.stride == 0
Q, postproc, Q_t, Q_pad = self._preproc(Q_bte, "Q")
postproc = misc.compose_undo(undo, postproc)
return (
postproc,
Q,
self._preproc(K_bte, "K", Q_t=Q_t, Q_pad=Q_pad) if K_bte is not None else None,
self._preproc(V_bte, "V", Q_t=Q_t, Q_pad=Q_pad) if V_bte is not None else None,
)
def preproc_r(self, R_bte):
_, R, _, _ = self.preproc_qkv(R_bte, None, None)
return R
Q_SCALE = 0.1
K_SCALE = 0.2
V_SCALE = 1.0
PROJ_SCALE = 1.0
MLP0_SCALE = 1.0
MLP1_SCALE = 1.0
R_SCALE = 0.1
B_SCALE = 0.2
class AttentionLayerBase(nn.Module):
def __init__(
self,
*,
attn,
scale,
x_size,
c_size,
qk_size,
v_size,
dtype,
relattn=False,
seqlens=None,
separate=False,
):
super().__init__()
dtype = tu.parse_dtype(dtype)
self.attn = attn
self.x_size = x_size
self.c_size = c_size
s = math.sqrt(scale)
separgs = dict(seqlens=seqlens, separate=separate)
self.q_layer = MultiscaleLinear(x_size, qk_size, name="q", scale=Q_SCALE, dtype=dtype, **separgs)
self.k_layer = MultiscaleLinear(c_size, qk_size, name="k", scale=K_SCALE, bias=False, dtype=dtype, **separgs)
self.v_layer = MultiscaleLinear(c_size, v_size, name="v", scale=V_SCALE * s, bias=False, dtype=dtype, **separgs)
self.proj_layer = MultiscaleLinear(v_size, x_size, name="proj", scale=PROJ_SCALE * s, dtype=dtype, **separgs)
self.relattn = relattn
maxlen = attn.maxlen
assert maxlen > 0 or not attn.mask
if self.relattn:
nbasis = 10
self.r_layer = tu.NormedLinear(x_size, nbasis * attn.h, scale=R_SCALE, dtype=dtype)
self.b_nd = nn.Parameter(th.randn(nbasis, maxlen) * B_SCALE)
self.maxlen = maxlen
self.dtype = dtype
def relattn_logits(self, X_bte, T):
R_btn = self.r_layer(X_bte).float()
R_btn = self.attn.preproc_r(R_btn)
t = R_btn.shape[1]
D_ntT = util.bandify(self.b_nd, t, T)
extra_btT = th.einsum("btn,ntp->btp", R_btn, D_ntT)
return extra_btT
def quick_gelu(x):
return x * th.sigmoid(1.702 * x)
def act(actname, x):
if actname == "relu":
return F.relu(x)
elif actname == "gelu":
return quick_gelu(x)
elif actname == "none":
return x
else:
raise NotImplementedError(actname)
class SelfAttentionLayer(AttentionLayerBase):
"""
Residual attention layer that takes a single tensor x and has it attend to itself
Has the form
output = x + f(x)
"""
def __init__(
self,
x_size,
attn,
scale,
dtype="float32",
norm="layer",
cache_keep_len=None,
relattn=False,
log_scope="sa",
use_muP_factor=False,
**kwargs,
):
super().__init__(
x_size=x_size,
c_size=x_size,
qk_size=x_size,
v_size=x_size,
attn=attn,
scale=scale,
relattn=relattn,
dtype=dtype,
**kwargs,
)
self.ln_x = util.get_norm(norm, x_size, dtype=dtype)
if cache_keep_len is None:
if hasattr(attn, "cache_keep_len"):
cache_keep_len = attn.cache_keep_len
else:
if isinstance(attn, StridedAttn):
stride = attn.stride
else:
stride = 1
cache_keep_len = stride * attn.maxlen
self.cache_keep_len = cache_keep_len
self.log_scope = log_scope
self.use_muP_factor = use_muP_factor
def residual(self, X_bte, state):
X_bte = self.ln_x(X_bte)
Q_bte = self.q_layer(X_bte)
K_bte = self.k_layer(X_bte)
V_bte = self.v_layer(X_bte)
if state:
state, K_bte, V_bte = self.update_state(state, K_bte, V_bte)
postproc_closure, Q_bte, K_bte, V_bte = self.attn.preproc_qkv(Q_bte, K_bte, V_bte)
extra_btT = self.relattn_logits(X_bte, K_bte.shape[1]) if self.relattn else None
A_bte = attention(
Q_bte,
K_bte,
V_bte,
mask=self.attn.mask,
extra_btT=extra_btT,
maxlen=self.maxlen,
dtype=self.dtype,
check_sentinel=isinstance(self.attn, StridedAttn),
use_muP_factor=self.use_muP_factor,
)
A_bte = postproc_closure(A_bte)
Aproj_bte = self.proj_layer(A_bte)
return Aproj_bte, state
def forward(self, X_bte, state):
R_bte, state = self.residual(X_bte, state)
return X_bte + R_bte, state
def stateless_forward(self, X_bte):
out_bte, _state = self.forward(X_bte, None)
return out_bte
def update_state(self, state, K_bte, V_bte):
def append(prev, new):
"""
Given `prev` keys from cache, and `new` keys,
returns (cache, full), where
- cache goes into the output state, length chosen so that on the
next timestep, there are enough cached timesteps to get the full
context of lenth self.maxlen.
- full is used for the current forward pass, with length chosen so
that the first timestep new[:, 0] gets to see a context of
self.maxlen.
"""
tprev = prev.shape[1]
startfull = max(tprev - self.cache_keep_len, 0)
full = th.cat([prev[:, startfull:], new], dim=1)
outstate = full[:, max(full.shape[1] - (self.cache_keep_len), 0) :]
# To see that the preceding slicing is correct, consider the case
# that maxlen==1. Then `full` only consists of `new`, and
# `outstate` is empty
return outstate, full
instate_K, instate_V = state
outstate_K, K_bte = append(instate_K, K_bte)
outstate_V, V_bte = append(instate_V, V_bte)
assert outstate_K.shape[-2] <= self.cache_keep_len
return (outstate_K, outstate_V), K_bte, V_bte
def initial_state(self, batchsize, initial_T=0):
return (
tu.zeros((batchsize, initial_T, self.x_size), dtype=self.dtype),
tu.zeros((batchsize, initial_T, self.x_size), dtype=self.dtype),
)
def empty_state(self):
return None
class PointwiseLayer(nn.Module):
"""
Residual MLP applied at each timestep
"""
def __init__(self, x_size, scale, dtype, norm, actname="relu", mlp_ratio=2):
super().__init__()
s = math.sqrt(scale)
self.ln = util.get_norm(norm, x_size, dtype=dtype)
self.mlp = mlp.MLP(
insize=x_size,
nhidlayer=1,
outsize=x_size,
hidsize=int(x_size * mlp_ratio),
hidactiv=functools.partial(act, actname),
dtype=dtype,
)
self.mlp.layers[0].weight.data *= MLP0_SCALE * s
self.mlp.layers[1].weight.data *= MLP1_SCALE * s
def residual(self, x):
x = self.ln(x)
x = self.mlp(x)
return x
def forward(self, x):
return x + self.residual(x)
def _is_separate(sep, name):
if isinstance(sep, bool):
return sep
assert isinstance(sep, set)
if name in sep:
sep.remove(name)
return True
else:
return False
def make_maybe_multiscale(make_fn, *args, seqlens, separate, name, **kwargs):
"""
This function either creates one instance of a module or creates
a separate instance of the module for each resolution of the image,
determined by the `separate` parameter. We create separate modules
if `separate` is True or if `separate` is a set containing `name`.
"""
if _is_separate(separate, name):
modules = [make_fn(*args, **kwargs) for _ in seqlens]
return SplitCallJoin(modules, seqlens)
else:
return make_fn(*args, **kwargs)
class SplitCallJoin(nn.Module):
def __init__(self, mods, seqlens):
super().__init__()
self.mods = nn.ModuleList(mods)
self.seqlens = seqlens
def forward(self, x):
tl = sum(self.seqlens)
x, undo = misc.reshape_undo(x, "..., z*tl, e", "..., z, tl, e", tl=tl)
x = list(th.split(x, self.seqlens, dim=-2))
new_x = []
for x, mod in misc.safezip(x, self.mods):
x, this_undo = misc.reshape_undo(x, "..., z, l, e", "..., z*l, e")
x = mod(x)
x = this_undo(x)
new_x.append(x)
x = th.cat(new_x, dim=-2)
x = undo(x)
return x
MultiscaleLinear = functools.partial(make_maybe_multiscale, tu.NormedLinear)
MultiscalePointwise = functools.partial(make_maybe_multiscale, PointwiseLayer)