-
Notifications
You must be signed in to change notification settings - Fork 467
/
Copy pathspan_processor.rs
1046 lines (949 loc) · 39.7 KB
/
span_processor.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! # OpenTelemetry Span Processor Interface
//!
//! Span processor is an interface which allows hooks for span start and end method
//! invocations. The span processors are invoked only when
//! [`is_recording`] is true.
//!
//! Built-in span processors are responsible for batching and conversion of spans to
//! exportable representation and passing batches to exporters.
//!
//! Span processors can be registered directly on SDK [`TracerProvider`] and they are
//! invoked in the same order as they were registered.
//!
//! All `Tracer` instances created by a `TracerProvider` share the same span processors.
//! Changes to this collection reflect in all `Tracer` instances.
//!
//! The following diagram shows `SpanProcessor`'s relationship to other components
//! in the SDK:
//!
//! ```ascii
//! +-----+--------------+ +-----------------------+ +-------------------+
//! | | | | | | |
//! | | | | (Batch)SpanProcessor | | SpanExporter |
//! | | +---> (Simple)SpanProcessor +---> (OTLPExporter) |
//! | | | | | | |
//! | SDK | Tracer.span()| +-----------------------+ +-------------------+
//! | | Span.end() |
//! | | |
//! | | |
//! | | |
//! | | |
//! +-----+--------------+
//! ```
//!
//! [`is_recording`]: opentelemetry::trace::Span::is_recording()
//! [`TracerProvider`]: opentelemetry::trace::TracerProvider
use crate::export::trace::{ExportResult, SpanData, SpanExporter};
use crate::resource::Resource;
use crate::runtime::{RuntimeChannel, TrySend};
use crate::trace::Span;
use futures_channel::oneshot;
use futures_util::{
future::{self, BoxFuture, Either},
select,
stream::{self, FusedStream, FuturesUnordered},
StreamExt as _,
};
use opentelemetry::global;
use opentelemetry::{
trace::{TraceError, TraceResult},
Context,
};
use std::cmp::min;
use std::sync::{Arc, Mutex};
use std::{env, fmt, str::FromStr, time::Duration};
/// Delay interval between two consecutive exports.
const OTEL_BSP_SCHEDULE_DELAY: &str = "OTEL_BSP_SCHEDULE_DELAY";
/// Default delay interval between two consecutive exports.
const OTEL_BSP_SCHEDULE_DELAY_DEFAULT: u64 = 5_000;
/// Maximum queue size
const OTEL_BSP_MAX_QUEUE_SIZE: &str = "OTEL_BSP_MAX_QUEUE_SIZE";
/// Default maximum queue size
const OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT: usize = 2_048;
/// Maximum batch size, must be less than or equal to OTEL_BSP_MAX_QUEUE_SIZE
const OTEL_BSP_MAX_EXPORT_BATCH_SIZE: &str = "OTEL_BSP_MAX_EXPORT_BATCH_SIZE";
/// Default maximum batch size
const OTEL_BSP_MAX_EXPORT_BATCH_SIZE_DEFAULT: usize = 512;
/// Maximum allowed time to export data.
const OTEL_BSP_EXPORT_TIMEOUT: &str = "OTEL_BSP_EXPORT_TIMEOUT";
/// Default maximum allowed time to export data.
const OTEL_BSP_EXPORT_TIMEOUT_DEFAULT: u64 = 30_000;
/// Environment variable to configure max concurrent exports for batch span
/// processor.
const OTEL_BSP_MAX_CONCURRENT_EXPORTS: &str = "OTEL_BSP_MAX_CONCURRENT_EXPORTS";
/// Default max concurrent exports for BSP
const OTEL_BSP_MAX_CONCURRENT_EXPORTS_DEFAULT: usize = 1;
/// `SpanProcessor` is an interface which allows hooks for span start and end
/// method invocations. The span processors are invoked only when is_recording
/// is true.
pub trait SpanProcessor: Send + Sync + std::fmt::Debug {
/// `on_start` is called when a `Span` is started. This method is called
/// synchronously on the thread that started the span, therefore it should
/// not block or throw exceptions.
fn on_start(&self, span: &mut Span, cx: &Context);
/// `on_end` is called after a `Span` is ended (i.e., the end timestamp is
/// already set). This method is called synchronously within the `Span::end`
/// API, therefore it should not block or throw an exception.
fn on_end(&self, span: SpanData);
/// Force the spans lying in the cache to be exported.
fn force_flush(&self) -> TraceResult<()>;
/// Shuts down the processor. Called when SDK is shut down. This is an
/// opportunity for processors to do any cleanup required.
///
/// Implementation should make sure shutdown can be called multiple times.
fn shutdown(&self) -> TraceResult<()>;
/// Set the resource for the log processor.
fn set_resource(&mut self, _resource: &Resource) {}
}
/// A [SpanProcessor] that passes finished spans to the configured
/// `SpanExporter`, as soon as they are finished, without any batching. This is
/// typically useful for debugging and testing. For scenarios requiring higher
/// performance/throughput, consider using [BatchSpanProcessor].
#[derive(Debug)]
pub struct SimpleSpanProcessor {
exporter: Mutex<Box<dyn SpanExporter>>,
}
impl SimpleSpanProcessor {
/// Create a new [SimpleSpanProcessor] using the provided exporter.
pub fn new(exporter: Box<dyn SpanExporter>) -> Self {
Self {
exporter: Mutex::new(exporter),
}
}
}
impl SpanProcessor for SimpleSpanProcessor {
fn on_start(&self, _span: &mut Span, _cx: &Context) {
// Ignored
}
fn on_end(&self, span: SpanData) {
if !span.span_context.is_sampled() {
return;
}
let result = self
.exporter
.lock()
.map_err(|_| TraceError::Other("SimpleSpanProcessor mutex poison".into()))
.and_then(|mut exporter| futures_executor::block_on(exporter.export(vec![span])));
if let Err(err) = result {
global::handle_error(err);
}
}
fn force_flush(&self) -> TraceResult<()> {
// Nothing to flush for simple span processor.
Ok(())
}
fn shutdown(&self) -> TraceResult<()> {
if let Ok(mut exporter) = self.exporter.lock() {
exporter.shutdown();
Ok(())
} else {
Err(TraceError::Other(
"SimpleSpanProcessor mutex poison at shutdown".into(),
))
}
}
fn set_resource(&mut self, resource: &Resource) {
if let Ok(mut exporter) = self.exporter.lock() {
exporter.set_resource(resource);
}
}
}
/// A [`SpanProcessor`] that asynchronously buffers finished spans and reports
/// them at a preconfigured interval.
///
/// Batch span processors need to run a background task to collect and send
/// spans. Different runtimes need different ways to handle the background task.
///
/// Note: Configuring an opentelemetry `Runtime` that's not compatible with the
/// underlying runtime can cause deadlocks (see tokio section).
///
/// ### Use with Tokio
///
/// Tokio currently offers two different schedulers. One is
/// `current_thread_scheduler`, the other is `multiple_thread_scheduler`. Both
/// of them default to use batch span processors to install span exporters.
///
/// Tokio's `current_thread_scheduler` can cause the program to hang forever if
/// blocking work is scheduled with other tasks in the same runtime. To avoid
/// this, be sure to enable the `rt-tokio-current-thread` feature in this crate
/// if you are using that runtime (e.g. users of actix-web), and blocking tasks
/// will then be scheduled on a different thread.
///
/// # Examples
///
/// This processor can be configured with an [`executor`] of your choice to
/// batch and upload spans asynchronously when they end. If you have added a
/// library like [`tokio`] or [`async-std`], you can pass in their respective
/// `spawn` and `interval` functions to have batching performed in those
/// contexts.
///
/// ```
/// # #[cfg(feature="tokio")]
/// # {
/// use opentelemetry::global;
/// use opentelemetry_sdk::{runtime, testing::trace::NoopSpanExporter, trace};
/// use opentelemetry_sdk::trace::BatchConfigBuilder;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// // Configure your preferred exporter
/// let exporter = NoopSpanExporter::new();
///
/// // Create a batch span processor using an exporter and a runtime
/// let batch = trace::BatchSpanProcessor::builder(exporter, runtime::Tokio)
/// .with_batch_config(BatchConfigBuilder::default().with_max_queue_size(4096).build())
/// .build();
///
/// // Then use the `with_batch_exporter` method to have the provider export spans in batches.
/// let provider = trace::TracerProvider::builder()
/// .with_span_processor(batch)
/// .build();
///
/// let _ = global::set_tracer_provider(provider);
/// }
/// # }
/// ```
///
/// [`executor`]: https://docs.rs/futures/0.3/futures/executor/index.html
/// [`tokio`]: https://tokio.rs
/// [`async-std`]: https://async.rs
pub struct BatchSpanProcessor<R: RuntimeChannel> {
message_sender: R::Sender<BatchMessage>,
}
impl<R: RuntimeChannel> fmt::Debug for BatchSpanProcessor<R> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BatchSpanProcessor")
.field("message_sender", &self.message_sender)
.finish()
}
}
impl<R: RuntimeChannel> SpanProcessor for BatchSpanProcessor<R> {
fn on_start(&self, _span: &mut Span, _cx: &Context) {
// Ignored
}
fn on_end(&self, span: SpanData) {
if !span.span_context.is_sampled() {
return;
}
let result = self.message_sender.try_send(BatchMessage::ExportSpan(span));
if let Err(err) = result {
global::handle_error(TraceError::Other(err.into()));
}
}
fn force_flush(&self) -> TraceResult<()> {
let (res_sender, res_receiver) = oneshot::channel();
self.message_sender
.try_send(BatchMessage::Flush(Some(res_sender)))
.map_err(|err| TraceError::Other(err.into()))?;
futures_executor::block_on(res_receiver)
.map_err(|err| TraceError::Other(err.into()))
.and_then(|identity| identity)
}
fn shutdown(&self) -> TraceResult<()> {
let (res_sender, res_receiver) = oneshot::channel();
self.message_sender
.try_send(BatchMessage::Shutdown(res_sender))
.map_err(|err| TraceError::Other(err.into()))?;
futures_executor::block_on(res_receiver)
.map_err(|err| TraceError::Other(err.into()))
.and_then(|identity| identity)
}
fn set_resource(&mut self, resource: &Resource) {
let resource = Arc::new(resource.clone());
let _ = self
.message_sender
.try_send(BatchMessage::SetResource(resource));
}
}
/// Messages sent between application thread and batch span processor's work thread.
// In this enum the size difference is not a concern because:
// 1. If we wrap SpanData into a pointer, it will add overhead when processing.
// 2. Most of the messages will be ExportSpan.
#[allow(clippy::large_enum_variant)]
#[derive(Debug)]
enum BatchMessage {
/// Export spans, usually called when span ends
ExportSpan(SpanData),
/// Flush the current buffer to the backend, it can be triggered by
/// pre configured interval or a call to `force_push` function.
Flush(Option<oneshot::Sender<ExportResult>>),
/// Shut down the worker thread, push all spans in buffer to the backend.
Shutdown(oneshot::Sender<ExportResult>),
/// Set the resource for the exporter.
SetResource(Arc<Resource>),
}
struct BatchSpanProcessorInternal<R> {
spans: Vec<SpanData>,
export_tasks: FuturesUnordered<BoxFuture<'static, ExportResult>>,
runtime: R,
exporter: Box<dyn SpanExporter>,
config: BatchConfig,
}
impl<R: RuntimeChannel> BatchSpanProcessorInternal<R> {
async fn flush(&mut self, res_channel: Option<oneshot::Sender<ExportResult>>) {
let export_task = self.export();
let task = Box::pin(async move {
let result = export_task.await;
if let Some(channel) = res_channel {
if let Err(result) = channel.send(result) {
global::handle_error(TraceError::from(format!(
"failed to send flush result: {:?}",
result
)));
}
} else if let Err(err) = result {
global::handle_error(err);
}
Ok(())
});
if self.config.max_concurrent_exports == 1 {
let _ = task.await;
} else {
self.export_tasks.push(task);
while self.export_tasks.next().await.is_some() {}
}
}
/// Process a single message
///
/// A return value of false indicates shutdown
async fn process_message(&mut self, message: BatchMessage) -> bool {
match message {
// Span has finished, add to buffer of pending spans.
BatchMessage::ExportSpan(span) => {
self.spans.push(span);
if self.spans.len() == self.config.max_export_batch_size {
// If concurrent exports are saturated, wait for one to complete.
if !self.export_tasks.is_empty()
&& self.export_tasks.len() == self.config.max_concurrent_exports
{
self.export_tasks.next().await;
}
let export_task = self.export();
let task = async move {
if let Err(err) = export_task.await {
global::handle_error(err);
}
Ok(())
};
// Special case when not using concurrent exports
if self.config.max_concurrent_exports == 1 {
let _ = task.await;
} else {
self.export_tasks.push(Box::pin(task));
}
}
}
// Span batch interval time reached or a force flush has been invoked, export
// current spans.
//
// This is a hint to ensure that any tasks associated with Spans for which the
// SpanProcessor had already received events prior to the call to ForceFlush
// SHOULD be completed as soon as possible, preferably before returning from
// this method.
//
// In particular, if any SpanProcessor has any associated exporter, it SHOULD
// try to call the exporter's Export with all spans for which this was not
// already done and then invoke ForceFlush on it. The built-in SpanProcessors
// MUST do so. If a timeout is specified (see below), the SpanProcessor MUST
// prioritize honoring the timeout over finishing all calls. It MAY skip or
// abort some or all Export or ForceFlush calls it has made to achieve this
// goal.
//
// NB: `force_flush` is not currently implemented on exporters; the equivalent
// would be waiting for exporter tasks to complete. In the case of
// channel-coupled exporters, they will need a `force_flush` implementation to
// properly block.
BatchMessage::Flush(res_channel) => {
self.flush(res_channel).await;
}
// Stream has terminated or processor is shutdown, return to finish execution.
BatchMessage::Shutdown(ch) => {
self.flush(Some(ch)).await;
self.exporter.shutdown();
return false;
}
// propagate the resource
BatchMessage::SetResource(resource) => {
self.exporter.set_resource(&resource);
}
}
true
}
fn export(&mut self) -> BoxFuture<'static, ExportResult> {
// Batch size check for flush / shutdown. Those methods may be called
// when there's no work to do.
if self.spans.is_empty() {
return Box::pin(future::ready(Ok(())));
}
let export = self.exporter.export(self.spans.split_off(0));
let timeout = self.runtime.delay(self.config.max_export_timeout);
let time_out = self.config.max_export_timeout;
Box::pin(async move {
match future::select(export, timeout).await {
Either::Left((export_res, _)) => export_res,
Either::Right((_, _)) => ExportResult::Err(TraceError::ExportTimedOut(time_out)),
}
})
}
async fn run(mut self, mut messages: impl FusedStream<Item = BatchMessage> + Unpin) {
loop {
select! {
// FuturesUnordered implements Fuse intelligently such that it
// will become eligible again once new tasks are added to it.
_ = self.export_tasks.next() => {
// An export task completed; do we need to do anything with it?
},
message = messages.next() => {
match message {
Some(message) => {
if !self.process_message(message).await {
break;
}
},
None => break,
}
},
}
}
}
}
impl<R: RuntimeChannel> BatchSpanProcessor<R> {
pub(crate) fn new(exporter: Box<dyn SpanExporter>, config: BatchConfig, runtime: R) -> Self {
let (message_sender, message_receiver) =
runtime.batch_message_channel(config.max_queue_size);
let inner_runtime = runtime.clone();
// Spawn worker process via user-defined spawn function.
runtime.spawn(Box::pin(async move {
// Timer will take a reference to the current runtime, so its important we do this within the
// runtime.spawn()
let ticker = inner_runtime
.interval(config.scheduled_delay)
.skip(1) // The ticker is fired immediately, so we should skip the first one to align with the interval.
.map(|_| BatchMessage::Flush(None));
let timeout_runtime = inner_runtime.clone();
let messages = Box::pin(stream::select(message_receiver, ticker));
let processor = BatchSpanProcessorInternal {
spans: Vec::new(),
export_tasks: FuturesUnordered::new(),
runtime: timeout_runtime,
config,
exporter,
};
processor.run(messages).await
}));
// Return batch processor with link to worker
BatchSpanProcessor { message_sender }
}
/// Create a new batch processor builder
pub fn builder<E>(exporter: E, runtime: R) -> BatchSpanProcessorBuilder<E, R>
where
E: SpanExporter,
{
BatchSpanProcessorBuilder {
exporter,
config: Default::default(),
runtime,
}
}
}
/// Batch span processor configuration.
/// Use [`BatchConfigBuilder`] to configure your own instance of [`BatchConfig`].
#[derive(Debug)]
pub struct BatchConfig {
/// The maximum queue size to buffer spans for delayed processing. If the
/// queue gets full it drops the spans. The default value of is 2048.
max_queue_size: usize,
/// The delay interval in milliseconds between two consecutive processing
/// of batches. The default value is 5 seconds.
scheduled_delay: Duration,
/// The maximum number of spans to process in a single batch. If there are
/// more than one batch worth of spans then it processes multiple batches
/// of spans one batch after the other without any delay. The default value
/// is 512.
max_export_batch_size: usize,
/// The maximum duration to export a batch of data.
max_export_timeout: Duration,
/// Maximum number of concurrent exports
///
/// Limits the number of spawned tasks for exports and thus memory consumed
/// by an exporter. A value of 1 will cause exports to be performed
/// synchronously on the BatchSpanProcessor task.
max_concurrent_exports: usize,
}
impl Default for BatchConfig {
fn default() -> Self {
BatchConfigBuilder::default().build()
}
}
/// A builder for creating [`BatchConfig`] instances.
#[derive(Debug)]
pub struct BatchConfigBuilder {
max_queue_size: usize,
scheduled_delay: Duration,
max_export_batch_size: usize,
max_export_timeout: Duration,
max_concurrent_exports: usize,
}
impl Default for BatchConfigBuilder {
/// Create a new [`BatchConfigBuilder`] initialized with default batch config values as per the specs.
/// The values are overriden by environment variables if set.
/// The supported environment variables are:
/// * `OTEL_BSP_MAX_QUEUE_SIZE`
/// * `OTEL_BSP_SCHEDULE_DELAY`
/// * `OTEL_BSP_MAX_EXPORT_BATCH_SIZE`
/// * `OTEL_BSP_EXPORT_TIMEOUT`
/// * `OTEL_BSP_MAX_CONCURRENT_EXPORTS`
fn default() -> Self {
BatchConfigBuilder {
max_queue_size: OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT,
scheduled_delay: Duration::from_millis(OTEL_BSP_SCHEDULE_DELAY_DEFAULT),
max_export_batch_size: OTEL_BSP_MAX_EXPORT_BATCH_SIZE_DEFAULT,
max_export_timeout: Duration::from_millis(OTEL_BSP_EXPORT_TIMEOUT_DEFAULT),
max_concurrent_exports: OTEL_BSP_MAX_CONCURRENT_EXPORTS_DEFAULT,
}
.init_from_env_vars()
}
}
impl BatchConfigBuilder {
/// Set max_queue_size for [`BatchConfigBuilder`].
/// It's the maximum queue size to buffer spans for delayed processing.
/// If the queue gets full it will drops the spans.
/// The default value of is 2048.
pub fn with_max_queue_size(mut self, max_queue_size: usize) -> Self {
self.max_queue_size = max_queue_size;
self
}
/// Set max_export_batch_size for [`BatchConfigBuilder`].
/// It's the maximum number of spans to process in a single batch. If there are
/// more than one batch worth of spans then it processes multiple batches
/// of spans one batch after the other without any delay. The default value
/// is 512.
pub fn with_max_export_batch_size(mut self, max_export_batch_size: usize) -> Self {
self.max_export_batch_size = max_export_batch_size;
self
}
/// Set max_concurrent_exports for [`BatchConfigBuilder`].
/// It's the maximum number of concurrent exports.
/// Limits the number of spawned tasks for exports and thus memory consumed by an exporter.
/// The default value is 1.
/// IF the max_concurrent_exports value is default value, it will cause exports to be performed
/// synchronously on the BatchSpanProcessor task.
pub fn with_max_concurrent_exports(mut self, max_concurrent_exports: usize) -> Self {
self.max_concurrent_exports = max_concurrent_exports;
self
}
/// Set scheduled_delay_duration for [`BatchConfigBuilder`].
/// It's the delay interval in milliseconds between two consecutive processing of batches.
/// The default value is 5000 milliseconds.
pub fn with_scheduled_delay(mut self, scheduled_delay: Duration) -> Self {
self.scheduled_delay = scheduled_delay;
self
}
/// Set max_export_timeout for [`BatchConfigBuilder`].
/// It's the maximum duration to export a batch of data.
/// The The default value is 30000 milliseconds.
pub fn with_max_export_timeout(mut self, max_export_timeout: Duration) -> Self {
self.max_export_timeout = max_export_timeout;
self
}
/// Builds a `BatchConfig` enforcing the following invariants:
/// * `max_export_batch_size` must be less than or equal to `max_queue_size`.
pub fn build(self) -> BatchConfig {
// max export batch size must be less or equal to max queue size.
// we set max export batch size to max queue size if it's larger than max queue size.
let max_export_batch_size = min(self.max_export_batch_size, self.max_queue_size);
BatchConfig {
max_queue_size: self.max_queue_size,
scheduled_delay: self.scheduled_delay,
max_export_timeout: self.max_export_timeout,
max_concurrent_exports: self.max_concurrent_exports,
max_export_batch_size,
}
}
fn init_from_env_vars(mut self) -> Self {
if let Some(max_concurrent_exports) = env::var(OTEL_BSP_MAX_CONCURRENT_EXPORTS)
.ok()
.and_then(|max_concurrent_exports| usize::from_str(&max_concurrent_exports).ok())
{
self.max_concurrent_exports = max_concurrent_exports;
}
if let Some(max_queue_size) = env::var(OTEL_BSP_MAX_QUEUE_SIZE)
.ok()
.and_then(|queue_size| usize::from_str(&queue_size).ok())
{
self.max_queue_size = max_queue_size;
}
if let Some(scheduled_delay) = env::var(OTEL_BSP_SCHEDULE_DELAY)
.ok()
.and_then(|delay| u64::from_str(&delay).ok())
{
self.scheduled_delay = Duration::from_millis(scheduled_delay);
}
if let Some(max_export_batch_size) = env::var(OTEL_BSP_MAX_EXPORT_BATCH_SIZE)
.ok()
.and_then(|batch_size| usize::from_str(&batch_size).ok())
{
self.max_export_batch_size = max_export_batch_size;
}
// max export batch size must be less or equal to max queue size.
// we set max export batch size to max queue size if it's larger than max queue size.
if self.max_export_batch_size > self.max_queue_size {
self.max_export_batch_size = self.max_queue_size;
}
if let Some(max_export_timeout) = env::var(OTEL_BSP_EXPORT_TIMEOUT)
.ok()
.and_then(|timeout| u64::from_str(&timeout).ok())
{
self.max_export_timeout = Duration::from_millis(max_export_timeout);
}
self
}
}
/// A builder for creating [`BatchSpanProcessor`] instances.
///
#[derive(Debug)]
pub struct BatchSpanProcessorBuilder<E, R> {
exporter: E,
config: BatchConfig,
runtime: R,
}
impl<E, R> BatchSpanProcessorBuilder<E, R>
where
E: SpanExporter + 'static,
R: RuntimeChannel,
{
/// Set the BatchConfig for [BatchSpanProcessorBuilder]
pub fn with_batch_config(self, config: BatchConfig) -> Self {
BatchSpanProcessorBuilder { config, ..self }
}
/// Build a batch processor
pub fn build(self) -> BatchSpanProcessor<R> {
BatchSpanProcessor::new(Box::new(self.exporter), self.config, self.runtime)
}
}
#[cfg(all(test, feature = "testing", feature = "trace"))]
mod tests {
// cargo test trace::span_processor::tests:: --features=testing
use super::{
BatchSpanProcessor, SimpleSpanProcessor, SpanProcessor, OTEL_BSP_EXPORT_TIMEOUT,
OTEL_BSP_MAX_EXPORT_BATCH_SIZE, OTEL_BSP_MAX_QUEUE_SIZE, OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT,
OTEL_BSP_SCHEDULE_DELAY, OTEL_BSP_SCHEDULE_DELAY_DEFAULT,
};
use crate::export::trace::{ExportResult, SpanData, SpanExporter};
use crate::runtime;
use crate::testing::trace::{
new_test_export_span_data, new_tokio_test_exporter, InMemorySpanExporterBuilder,
};
use crate::trace::span_processor::{
OTEL_BSP_EXPORT_TIMEOUT_DEFAULT, OTEL_BSP_MAX_CONCURRENT_EXPORTS,
OTEL_BSP_MAX_CONCURRENT_EXPORTS_DEFAULT, OTEL_BSP_MAX_EXPORT_BATCH_SIZE_DEFAULT,
};
use crate::trace::{BatchConfig, BatchConfigBuilder, SpanEvents, SpanLinks};
use async_trait::async_trait;
use opentelemetry::trace::{SpanContext, SpanId, SpanKind, Status};
use std::fmt::Debug;
use std::future::Future;
use std::time::Duration;
#[test]
fn simple_span_processor_on_end_calls_export() {
let exporter = InMemorySpanExporterBuilder::new().build();
let processor = SimpleSpanProcessor::new(Box::new(exporter.clone()));
let span_data = new_test_export_span_data();
processor.on_end(span_data.clone());
assert_eq!(exporter.get_finished_spans().unwrap()[0], span_data);
let _result = processor.shutdown();
}
#[test]
fn simple_span_processor_on_end_skips_export_if_not_sampled() {
let exporter = InMemorySpanExporterBuilder::new().build();
let processor = SimpleSpanProcessor::new(Box::new(exporter.clone()));
let unsampled = SpanData {
span_context: SpanContext::empty_context(),
parent_span_id: SpanId::INVALID,
span_kind: SpanKind::Internal,
name: "opentelemetry".into(),
start_time: opentelemetry::time::now(),
end_time: opentelemetry::time::now(),
attributes: Vec::new(),
dropped_attributes_count: 0,
events: SpanEvents::default(),
links: SpanLinks::default(),
status: Status::Unset,
instrumentation_lib: Default::default(),
};
processor.on_end(unsampled);
assert!(exporter.get_finished_spans().unwrap().is_empty());
}
#[test]
fn simple_span_processor_shutdown_calls_shutdown() {
let exporter = InMemorySpanExporterBuilder::new().build();
let processor = SimpleSpanProcessor::new(Box::new(exporter.clone()));
let span_data = new_test_export_span_data();
processor.on_end(span_data.clone());
assert!(!exporter.get_finished_spans().unwrap().is_empty());
let _result = processor.shutdown();
// Assume shutdown is called by ensuring spans are empty in the exporter
assert!(exporter.get_finished_spans().unwrap().is_empty());
}
#[test]
fn test_default_const_values() {
assert_eq!(OTEL_BSP_MAX_QUEUE_SIZE, "OTEL_BSP_MAX_QUEUE_SIZE");
assert_eq!(OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT, 2048);
assert_eq!(OTEL_BSP_SCHEDULE_DELAY, "OTEL_BSP_SCHEDULE_DELAY");
assert_eq!(OTEL_BSP_SCHEDULE_DELAY_DEFAULT, 5000);
assert_eq!(
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
"OTEL_BSP_MAX_EXPORT_BATCH_SIZE"
);
assert_eq!(OTEL_BSP_MAX_EXPORT_BATCH_SIZE_DEFAULT, 512);
assert_eq!(OTEL_BSP_EXPORT_TIMEOUT, "OTEL_BSP_EXPORT_TIMEOUT");
assert_eq!(OTEL_BSP_EXPORT_TIMEOUT_DEFAULT, 30000);
}
#[test]
fn test_default_batch_config_adheres_to_specification() {
let env_vars = vec![
OTEL_BSP_SCHEDULE_DELAY,
OTEL_BSP_EXPORT_TIMEOUT,
OTEL_BSP_MAX_QUEUE_SIZE,
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
OTEL_BSP_MAX_CONCURRENT_EXPORTS,
];
let config = temp_env::with_vars_unset(env_vars, BatchConfig::default);
assert_eq!(
config.max_concurrent_exports,
OTEL_BSP_MAX_CONCURRENT_EXPORTS_DEFAULT
);
assert_eq!(
config.scheduled_delay,
Duration::from_millis(OTEL_BSP_SCHEDULE_DELAY_DEFAULT)
);
assert_eq!(
config.max_export_timeout,
Duration::from_millis(OTEL_BSP_EXPORT_TIMEOUT_DEFAULT)
);
assert_eq!(config.max_queue_size, OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT);
assert_eq!(
config.max_export_batch_size,
OTEL_BSP_MAX_EXPORT_BATCH_SIZE_DEFAULT
);
}
#[test]
fn test_batch_config_configurable_by_env_vars() {
let env_vars = vec![
(OTEL_BSP_SCHEDULE_DELAY, Some("2000")),
(OTEL_BSP_EXPORT_TIMEOUT, Some("60000")),
(OTEL_BSP_MAX_QUEUE_SIZE, Some("4096")),
(OTEL_BSP_MAX_EXPORT_BATCH_SIZE, Some("1024")),
];
let config = temp_env::with_vars(env_vars, BatchConfig::default);
assert_eq!(config.scheduled_delay, Duration::from_millis(2000));
assert_eq!(config.max_export_timeout, Duration::from_millis(60000));
assert_eq!(config.max_queue_size, 4096);
assert_eq!(config.max_export_batch_size, 1024);
}
#[test]
fn test_batch_config_max_export_batch_size_validation() {
let env_vars = vec![
(OTEL_BSP_MAX_QUEUE_SIZE, Some("256")),
(OTEL_BSP_MAX_EXPORT_BATCH_SIZE, Some("1024")),
];
let config = temp_env::with_vars(env_vars, BatchConfig::default);
assert_eq!(config.max_queue_size, 256);
assert_eq!(config.max_export_batch_size, 256);
assert_eq!(
config.scheduled_delay,
Duration::from_millis(OTEL_BSP_SCHEDULE_DELAY_DEFAULT)
);
assert_eq!(
config.max_export_timeout,
Duration::from_millis(OTEL_BSP_EXPORT_TIMEOUT_DEFAULT)
);
}
#[test]
fn test_batch_config_with_fields() {
let batch = BatchConfigBuilder::default()
.with_max_export_batch_size(10)
.with_scheduled_delay(Duration::from_millis(10))
.with_max_export_timeout(Duration::from_millis(10))
.with_max_concurrent_exports(10)
.with_max_queue_size(10)
.build();
assert_eq!(batch.max_export_batch_size, 10);
assert_eq!(batch.scheduled_delay, Duration::from_millis(10));
assert_eq!(batch.max_export_timeout, Duration::from_millis(10));
assert_eq!(batch.max_concurrent_exports, 10);
assert_eq!(batch.max_queue_size, 10);
}
#[test]
fn test_build_batch_span_processor_builder() {
let mut env_vars = vec![
(OTEL_BSP_MAX_EXPORT_BATCH_SIZE, Some("500")),
(OTEL_BSP_SCHEDULE_DELAY, Some("I am not number")),
(OTEL_BSP_EXPORT_TIMEOUT, Some("2046")),
];
temp_env::with_vars(env_vars.clone(), || {
let builder = BatchSpanProcessor::builder(
InMemorySpanExporterBuilder::new().build(),
runtime::Tokio,
);
// export batch size cannot exceed max queue size
assert_eq!(builder.config.max_export_batch_size, 500);
assert_eq!(
builder.config.scheduled_delay,
Duration::from_millis(OTEL_BSP_SCHEDULE_DELAY_DEFAULT)
);
assert_eq!(
builder.config.max_queue_size,
OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT
);
assert_eq!(
builder.config.max_export_timeout,
Duration::from_millis(2046)
);
});
env_vars.push((OTEL_BSP_MAX_QUEUE_SIZE, Some("120")));
temp_env::with_vars(env_vars, || {
let builder = BatchSpanProcessor::builder(
InMemorySpanExporterBuilder::new().build(),
runtime::Tokio,
);
assert_eq!(builder.config.max_export_batch_size, 120);
assert_eq!(builder.config.max_queue_size, 120);
});
}
#[tokio::test]
async fn test_batch_span_processor() {
let (exporter, mut export_receiver, _shutdown_receiver) = new_tokio_test_exporter();
let config = BatchConfig {
scheduled_delay: Duration::from_secs(60 * 60 * 24), // set the tick to 24 hours so we know the span must be exported via force_flush
..Default::default()
};
let processor =
BatchSpanProcessor::new(Box::new(exporter), config, runtime::TokioCurrentThread);
let handle = tokio::spawn(async move {
loop {
if let Some(span) = export_receiver.recv().await {
assert_eq!(span.span_context, new_test_export_span_data().span_context);
break;
}
}
});
tokio::time::sleep(Duration::from_secs(1)).await; // skip the first
processor.on_end(new_test_export_span_data());
let flush_res = processor.force_flush();
assert!(flush_res.is_ok());
let _shutdown_result = processor.shutdown();
assert!(
tokio::time::timeout(Duration::from_secs(5), handle)
.await
.is_ok(),
"timed out in 5 seconds. force_flush may not export any data when called"
);
}
struct BlockingExporter<D> {
delay_for: Duration,
delay_fn: D,
}
impl<D, DS> Debug for BlockingExporter<D>
where
D: Fn(Duration) -> DS + 'static + Send + Sync,
DS: Future<Output = ()> + Send + Sync + 'static,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str("blocking exporter for testing")
}
}
#[async_trait]
impl<D, DS> SpanExporter for BlockingExporter<D>
where
D: Fn(Duration) -> DS + 'static + Send + Sync,
DS: Future<Output = ()> + Send + Sync + 'static,
{
fn export(
&mut self,
_batch: Vec<SpanData>,
) -> futures_util::future::BoxFuture<'static, ExportResult> {
use futures_util::FutureExt;
Box::pin((self.delay_fn)(self.delay_for).map(|_| Ok(())))
}
}
#[test]
fn test_timeout_tokio_timeout() {
// If time_out is true, then we ask exporter to block for 60s and set timeout to 5s.
// If time_out is false, then we ask the exporter to block for 5s and set timeout to 60s.
// Either way, the test should be finished within 5s.
let runtime = tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap();
runtime.block_on(timeout_test_tokio(true));
}
#[test]
fn test_timeout_tokio_not_timeout() {
let runtime = tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap();
runtime.block_on(timeout_test_tokio(false));
}
#[test]
#[cfg(feature = "rt-async-std")]
fn test_timeout_async_std_timeout() {
async_std::task::block_on(timeout_test_std_async(true));
}
#[test]
#[cfg(feature = "rt-async-std")]
fn test_timeout_async_std_not_timeout() {
async_std::task::block_on(timeout_test_std_async(false));
}
// If the time_out is true, then the result suppose to ended with timeout.
// otherwise the exporter should be able to export within time out duration.
#[cfg(feature = "rt-async-std")]
async fn timeout_test_std_async(time_out: bool) {
let config = BatchConfig {