-
Notifications
You must be signed in to change notification settings - Fork 553
/
Copy pathyolox_s_fast_1xb12-40e-rtmdet-hyp_cat.py
76 lines (64 loc) · 2.27 KB
/
yolox_s_fast_1xb12-40e-rtmdet-hyp_cat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
_base_ = './yolox_s_fast_8xb32-300e-rtmdet-hyp_coco.py'
data_root = './data/cat/'
class_name = ('cat', )
num_classes = len(class_name)
metainfo = dict(classes=class_name, palette=[(20, 220, 60)])
num_last_epochs = 5
max_epochs = 40
train_batch_size_per_gpu = 12
train_num_workers = 4
load_from = 'https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco_20230210_134645-3a8dfbd7.pth' # noqa
model = dict(
backbone=dict(frozen_stages=4),
bbox_head=dict(head_module=dict(num_classes=num_classes)))
train_dataloader = dict(
batch_size=train_batch_size_per_gpu,
num_workers=train_num_workers,
dataset=dict(
data_root=data_root,
metainfo=metainfo,
ann_file='annotations/trainval.json',
data_prefix=dict(img='images/')))
val_dataloader = dict(
dataset=dict(
metainfo=metainfo,
data_root=data_root,
ann_file='annotations/test.json',
data_prefix=dict(img='images/')))
test_dataloader = val_dataloader
param_scheduler = [
dict(
# use quadratic formula to warm up 3 epochs
# and lr is updated by iteration
# TODO: fix default scope in get function
type='mmdet.QuadraticWarmupLR',
by_epoch=True,
begin=0,
end=3,
convert_to_iter_based=True),
dict(
# use cosine lr from 5 to 35 epoch
type='CosineAnnealingLR',
eta_min=_base_.base_lr * 0.05,
begin=5,
T_max=max_epochs - num_last_epochs,
end=max_epochs - num_last_epochs,
by_epoch=True,
convert_to_iter_based=True),
dict(
# use fixed lr during last num_last_epochs epochs
type='ConstantLR',
by_epoch=True,
factor=1,
begin=max_epochs - num_last_epochs,
end=max_epochs,
)
]
_base_.custom_hooks[0].num_last_epochs = num_last_epochs
val_evaluator = dict(ann_file=data_root + 'annotations/test.json')
test_evaluator = val_evaluator
default_hooks = dict(
checkpoint=dict(interval=10, max_keep_ckpts=2, save_best='auto'),
logger=dict(type='LoggerHook', interval=5))
train_cfg = dict(max_epochs=max_epochs, val_interval=10)
# visualizer = dict(vis_backends = [dict(type='LocalVisBackend'), dict(type='WandbVisBackend')]) # noqa