-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathfocal_loss.py
337 lines (317 loc) · 15.1 KB
/
focal_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Copyright (c) OpenMMLab. All rights reserved.
# Modified from https://github.com/open-mmlab/mmdetection
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.ops import sigmoid_focal_loss as _sigmoid_focal_loss
from mmseg.registry import MODELS
from .utils import weight_reduce_loss
# This method is used when cuda is not available
def py_sigmoid_focal_loss(pred,
target,
one_hot_target=None,
weight=None,
gamma=2.0,
alpha=0.5,
class_weight=None,
valid_mask=None,
reduction='mean',
avg_factor=None):
"""PyTorch version of `Focal Loss <https://arxiv.org/abs/1708.02002>`_.
Args:
pred (torch.Tensor): The prediction with shape (N, C), C is the
number of classes
target (torch.Tensor): The learning label of the prediction with
shape (N, C)
one_hot_target (None): Placeholder. It should be None.
weight (torch.Tensor, optional): Sample-wise loss weight.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
alpha (float | list[float], optional): A balanced form for Focal Loss.
Defaults to 0.5.
class_weight (list[float], optional): Weight of each class.
Defaults to None.
valid_mask (torch.Tensor, optional): A mask uses 1 to mark the valid
samples and uses 0 to mark the ignored samples. Default: None.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
"""
if isinstance(alpha, list):
alpha = pred.new_tensor(alpha)
pred_sigmoid = pred.sigmoid()
target = target.type_as(pred)
one_minus_pt = (1 - pred_sigmoid) * target + pred_sigmoid * (1 - target)
focal_weight = (alpha * target + (1 - alpha) *
(1 - target)) * one_minus_pt.pow(gamma)
loss = F.binary_cross_entropy_with_logits(
pred, target, reduction='none') * focal_weight
final_weight = torch.ones(1, pred.size(1)).type_as(loss)
if weight is not None:
if weight.shape != loss.shape and weight.size(0) == loss.size(0):
# For most cases, weight is of shape (N, ),
# which means it does not have the second axis num_class
weight = weight.view(-1, 1)
assert weight.dim() == loss.dim()
final_weight = final_weight * weight
if class_weight is not None:
final_weight = final_weight * pred.new_tensor(class_weight)
if valid_mask is not None:
final_weight = final_weight * valid_mask
loss = weight_reduce_loss(loss, final_weight, reduction, avg_factor)
return loss
def sigmoid_focal_loss(pred,
target,
one_hot_target,
weight=None,
gamma=2.0,
alpha=0.5,
class_weight=None,
valid_mask=None,
reduction='mean',
avg_factor=None):
r"""A wrapper of cuda version `Focal Loss
<https://arxiv.org/abs/1708.02002>`_.
Args:
pred (torch.Tensor): The prediction with shape (N, C), C is the number
of classes.
target (torch.Tensor): The learning label of the prediction. It's shape
should be (N, )
one_hot_target (torch.Tensor): The learning label with shape (N, C)
weight (torch.Tensor, optional): Sample-wise loss weight.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
alpha (float | list[float], optional): A balanced form for Focal Loss.
Defaults to 0.5.
class_weight (list[float], optional): Weight of each class.
Defaults to None.
valid_mask (torch.Tensor, optional): A mask uses 1 to mark the valid
samples and uses 0 to mark the ignored samples. Default: None.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
"""
# Function.apply does not accept keyword arguments, so the decorator
# "weighted_loss" is not applicable
final_weight = torch.ones(1, pred.size(1)).type_as(pred)
if isinstance(alpha, list):
# _sigmoid_focal_loss doesn't accept alpha of list type. Therefore, if
# a list is given, we set the input alpha as 0.5. This means setting
# equal weight for foreground class and background class. By
# multiplying the loss by 2, the effect of setting alpha as 0.5 is
# undone. The alpha of type list is used to regulate the loss in the
# post-processing process.
loss = _sigmoid_focal_loss(pred.contiguous(), target.contiguous(),
gamma, 0.5, None, 'none') * 2
alpha = pred.new_tensor(alpha)
final_weight = final_weight * (
alpha * one_hot_target + (1 - alpha) * (1 - one_hot_target))
else:
loss = _sigmoid_focal_loss(pred.contiguous(), target.contiguous(),
gamma, alpha, None, 'none')
if weight is not None:
if weight.shape != loss.shape and weight.size(0) == loss.size(0):
# For most cases, weight is of shape (N, ),
# which means it does not have the second axis num_class
weight = weight.view(-1, 1)
assert weight.dim() == loss.dim()
final_weight = final_weight * weight
if class_weight is not None:
final_weight = final_weight * pred.new_tensor(class_weight)
if valid_mask is not None:
final_weight = final_weight * valid_mask
loss = weight_reduce_loss(loss, final_weight, reduction, avg_factor)
return loss
@MODELS.register_module()
class FocalLoss(nn.Module):
def __init__(self,
use_sigmoid=True,
gamma=2.0,
alpha=0.5,
reduction='mean',
class_weight=None,
loss_weight=1.0,
loss_name='loss_focal'):
"""`Focal Loss <https://arxiv.org/abs/1708.02002>`_
Args:
use_sigmoid (bool, optional): Whether to the prediction is
used for sigmoid or softmax. Defaults to True.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
alpha (float | list[float], optional): A balanced form for Focal
Loss. Defaults to 0.5. When a list is provided, the length
of the list should be equal to the number of classes.
Please be careful that this parameter is not the
class-wise weight but the weight of a binary classification
problem. This binary classification problem regards the
pixels which belong to one class as the foreground
and the other pixels as the background, each element in
the list is the weight of the corresponding foreground class.
The value of alpha or each element of alpha should be a float
in the interval [0, 1]. If you want to specify the class-wise
weight, please use `class_weight` parameter.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'. Options are "none", "mean" and
"sum".
class_weight (list[float], optional): Weight of each class.
Defaults to None.
loss_weight (float, optional): Weight of loss. Defaults to 1.0.
loss_name (str, optional): Name of the loss item. If you want this
loss item to be included into the backward graph, `loss_` must
be the prefix of the name. Defaults to 'loss_focal'.
"""
super().__init__()
assert use_sigmoid is True, \
'AssertionError: Only sigmoid focal loss supported now.'
assert reduction in ('none', 'mean', 'sum'), \
"AssertionError: reduction should be 'none', 'mean' or " \
"'sum'"
assert isinstance(alpha, (float, list)), \
'AssertionError: alpha should be of type float'
assert isinstance(gamma, float), \
'AssertionError: gamma should be of type float'
assert isinstance(loss_weight, float), \
'AssertionError: loss_weight should be of type float'
assert isinstance(loss_name, str), \
'AssertionError: loss_name should be of type str'
assert isinstance(class_weight, list) or class_weight is None, \
'AssertionError: class_weight must be None or of type list'
self.use_sigmoid = use_sigmoid
self.gamma = gamma
self.alpha = alpha
self.reduction = reduction
self.class_weight = class_weight
self.loss_weight = loss_weight
self._loss_name = loss_name
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None,
ignore_index=255,
**kwargs):
"""Forward function.
Args:
pred (torch.Tensor): The prediction with shape
(N, C) where C = number of classes, or
(N, C, d_1, d_2, ..., d_K) with K≥1 in the
case of K-dimensional loss.
target (torch.Tensor): The ground truth. If containing class
indices, shape (N) where each value is 0≤targets[i]≤C−1,
or (N, d_1, d_2, ..., d_K) with K≥1 in the case of
K-dimensional loss. If containing class probabilities,
same shape as the input.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to
average the loss. Defaults to None.
reduction_override (str, optional): The reduction method used
to override the original reduction method of the loss.
Options are "none", "mean" and "sum".
ignore_index (int, optional): The label index to be ignored.
Default: 255
Returns:
torch.Tensor: The calculated loss
"""
assert isinstance(ignore_index, int), \
'ignore_index must be of type int'
assert reduction_override in (None, 'none', 'mean', 'sum'), \
"AssertionError: reduction should be 'none', 'mean' or " \
"'sum'"
assert pred.shape == target.shape or \
(pred.size(0) == target.size(0) and
pred.shape[2:] == target.shape[1:]), \
"The shape of pred doesn't match the shape of target"
original_shape = pred.shape
# [B, C, d_1, d_2, ..., d_k] -> [C, B, d_1, d_2, ..., d_k]
pred = pred.transpose(0, 1)
# [C, B, d_1, d_2, ..., d_k] -> [C, N]
pred = pred.reshape(pred.size(0), -1)
# [C, N] -> [N, C]
pred = pred.transpose(0, 1).contiguous()
if original_shape == target.shape:
# target with shape [B, C, d_1, d_2, ...]
# transform it's shape into [N, C]
# [B, C, d_1, d_2, ...] -> [C, B, d_1, d_2, ..., d_k]
target = target.transpose(0, 1)
# [C, B, d_1, d_2, ..., d_k] -> [C, N]
target = target.reshape(target.size(0), -1)
# [C, N] -> [N, C]
target = target.transpose(0, 1).contiguous()
else:
# target with shape [B, d_1, d_2, ...]
# transform it's shape into [N, ]
target = target.view(-1).contiguous()
valid_mask = (target != ignore_index).view(-1, 1)
# avoid raising error when using F.one_hot()
target = torch.where(target == ignore_index, target.new_tensor(0),
target)
reduction = (
reduction_override if reduction_override else self.reduction)
if self.use_sigmoid:
num_classes = pred.size(1)
if torch.cuda.is_available() and pred.is_cuda:
if target.dim() == 1:
one_hot_target = F.one_hot(
target, num_classes=num_classes + 1)
if num_classes == 1:
one_hot_target = one_hot_target[:, 1]
target = 1 - target
else:
one_hot_target = one_hot_target[:, :num_classes]
else:
one_hot_target = target
target = target.argmax(dim=1)
valid_mask = (target != ignore_index).view(-1, 1)
calculate_loss_func = sigmoid_focal_loss
else:
one_hot_target = None
if target.dim() == 1:
target = F.one_hot(target, num_classes=num_classes + 1)
if num_classes == 1:
target = target[:, 1]
else:
target = target[:, num_classes]
else:
valid_mask = (target.argmax(dim=1) != ignore_index).view(
-1, 1)
calculate_loss_func = py_sigmoid_focal_loss
loss_cls = self.loss_weight * calculate_loss_func(
pred,
target,
one_hot_target,
weight,
gamma=self.gamma,
alpha=self.alpha,
class_weight=self.class_weight,
valid_mask=valid_mask,
reduction=reduction,
avg_factor=avg_factor)
if reduction == 'none':
# [N, C] -> [C, N]
loss_cls = loss_cls.transpose(0, 1)
# [C, N] -> [C, B, d1, d2, ...]
# original_shape: [B, C, d1, d2, ...]
loss_cls = loss_cls.reshape(original_shape[1],
original_shape[0],
*original_shape[2:])
# [C, B, d1, d2, ...] -> [B, C, d1, d2, ...]
loss_cls = loss_cls.transpose(0, 1).contiguous()
else:
raise NotImplementedError
return loss_cls
@property
def loss_name(self):
"""Loss Name.
This function must be implemented and will return the name of this
loss function. This name will be used to combine different loss items
by simple sum operation. In addition, if you want this loss item to be
included into the backward graph, `loss_` must be the prefix of the
name.
Returns:
str: The name of this loss item.
"""
return self._loss_name