-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathmetafile.yaml
109 lines (109 loc) · 4.38 KB
/
metafile.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
Collections:
- Name: EMANet
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
Paper:
Title: Expectation-Maximization Attention Networks for Semantic Segmentation
URL: https://arxiv.org/abs/1907.13426
README: configs/emanet/README.md
Frameworks:
- PyTorch
Models:
- Name: eemanet_r50-d8_4xb2-80k_cityscapes-512x1024
In Collection: EMANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.59
mIoU(ms+flip): 79.44
Config: configs/emanet/eemanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- EMANet
Training Resources: 4x V100 GPUS
Memory (GB): 5.4
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes-20200901_100301.log.json
Paper:
Title: Expectation-Maximization Attention Networks for Semantic Segmentation
URL: https://arxiv.org/abs/1907.13426
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
Framework: PyTorch
- Name: emanet_r101-d8_4xb2-80k_cityscapes-512x1024
In Collection: EMANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.1
mIoU(ms+flip): 81.21
Config: configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- EMANet
Training Resources: 4x V100 GPUS
Memory (GB): 6.2
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes-20200901_100301.log.json
Paper:
Title: Expectation-Maximization Attention Networks for Semantic Segmentation
URL: https://arxiv.org/abs/1907.13426
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
Framework: PyTorch
- Name: emanet_r50-d8_4xb2-80k_cityscapes-769x769
In Collection: EMANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.33
mIoU(ms+flip): 80.49
Config: configs/emanet/emanet_r50-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- EMANet
Training Resources: 4x V100 GPUS
Memory (GB): 8.9
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes-20200901_100301.log.json
Paper:
Title: Expectation-Maximization Attention Networks for Semantic Segmentation
URL: https://arxiv.org/abs/1907.13426
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
Framework: PyTorch
- Name: emanet_r101-d8_4xb2-80k_cityscapes-769x769
In Collection: EMANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.62
mIoU(ms+flip): 81.0
Config: configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- EMANet
Training Resources: 4x V100 GPUS
Memory (GB): 10.1
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes-20200901_100301.log.json
Paper:
Title: Expectation-Maximization Attention Networks for Semantic Segmentation
URL: https://arxiv.org/abs/1907.13426
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
Framework: PyTorch