-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathparse_macaquepose_dataset.py
182 lines (148 loc) · 5.46 KB
/
parse_macaquepose_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) OpenMMLab. All rights reserved.
import csv
import json
import os
import time
import cv2
import numpy as np
np.random.seed(0)
def get_poly_area(x, y):
"""Calculate area of polygon given (x,y) coordinates (Shoelace formula)
:param x: np.ndarray(N, )
:param y: np.ndarray(N, )
:return: area
"""
return float(0.5 *
np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))))
def get_seg_area(segmentations):
area = 0
for segmentation in segmentations:
area += get_poly_area(segmentation[:, 0], segmentation[:, 1])
return area
def save_coco_anno(data_annotation,
img_root,
save_path,
start_img_id=0,
start_ann_id=0,
kpt_num=17):
"""Save annotations in coco-format.
:param data_annotation: list of data annotation.
:param img_root: the root dir to load images.
:param save_path: the path to save transformed annotation file.
:param start_img_id: the starting point to count the image id.
:param start_ann_id: the starting point to count the annotation id.
:param kpt_num: the number of keypoint.
"""
images = []
annotations = []
img_id = start_img_id
ann_id = start_ann_id
for i in range(0, len(data_annotation)):
data_anno = data_annotation[i]
image_name = data_anno[0]
img = cv2.imread(os.path.join(img_root, image_name))
kp_string = data_anno[1]
kps = json.loads(kp_string)
seg_string = data_anno[2]
segs = json.loads(seg_string)
for kp, seg in zip(kps, segs):
keypoints = np.zeros([kpt_num, 3])
for ind, p in enumerate(kp):
if p['position'] is None:
continue
else:
keypoints[ind, 0] = p['position'][0]
keypoints[ind, 1] = p['position'][1]
keypoints[ind, 2] = 2
segmentations = []
max_x = -1
max_y = -1
min_x = 999999
min_y = 999999
for segm in seg:
if len(segm['segment']) == 0:
continue
segmentation = np.array(segm['segment'])
segmentations.append(segmentation)
_max_x, _max_y = segmentation.max(0)
_min_x, _min_y = segmentation.min(0)
max_x = max(max_x, _max_x)
max_y = max(max_y, _max_y)
min_x = min(min_x, _min_x)
min_y = min(min_y, _min_y)
anno = {}
anno['keypoints'] = keypoints.reshape(-1).tolist()
anno['image_id'] = img_id
anno['id'] = ann_id
anno['num_keypoints'] = int(sum(keypoints[:, 2] > 0))
anno['bbox'] = [
float(min_x),
float(min_y),
float(max_x - min_x + 1),
float(max_y - min_y + 1)
]
anno['iscrowd'] = 0
anno['area'] = get_seg_area(segmentations)
anno['category_id'] = 1
anno['segmentation'] = [
seg.reshape(-1).tolist() for seg in segmentations
]
annotations.append(anno)
ann_id += 1
image = {}
image['id'] = img_id
image['file_name'] = image_name
image['height'] = img.shape[0]
image['width'] = img.shape[1]
images.append(image)
img_id += 1
cocotype = {}
cocotype['info'] = {}
cocotype['info']['description'] = 'MacaquePose Generated by MMPose Team'
cocotype['info']['version'] = '1.0'
cocotype['info']['year'] = time.strftime('%Y', time.localtime())
cocotype['info']['date_created'] = time.strftime('%Y/%m/%d',
time.localtime())
cocotype['images'] = images
cocotype['annotations'] = annotations
cocotype['categories'] = [{
'supercategory':
'animal',
'id':
1,
'name':
'macaque',
'keypoints': [
'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear',
'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow',
'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee',
'right_knee', 'left_ankle', 'right_ankle'
],
'skeleton': [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12],
[7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3],
[1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
}]
os.makedirs(os.path.dirname(save_path), exist_ok=True)
json.dump(cocotype, open(save_path, 'w'), indent=4)
print('number of images:', img_id)
print('number of annotations:', ann_id)
print(f'done {save_path}')
dataset_dir = '/data/macaque/'
with open(os.path.join(dataset_dir, 'annotations.csv'), 'r') as fp:
data_annotation_all = list(csv.reader(fp, delimiter=','))[1:]
np.random.shuffle(data_annotation_all)
data_annotation_train = data_annotation_all[0:12500]
data_annotation_val = data_annotation_all[12500:]
img_root = os.path.join(dataset_dir, 'images')
save_coco_anno(
data_annotation_train,
img_root,
os.path.join(dataset_dir, 'annotations', 'macaque_train.json'),
kpt_num=17)
save_coco_anno(
data_annotation_val,
img_root,
os.path.join(dataset_dir, 'annotations', 'macaque_test.json'),
start_img_id=12500,
start_ann_id=15672,
kpt_num=17)