From 7e53439b52dc3f0d930b1f2d641862820cb41bcc Mon Sep 17 00:00:00 2001 From: liyinhao Date: Sat, 19 Sep 2020 23:19:40 +0800 Subject: [PATCH] Change cyclic_20e --- configs/_base_/schedules/cyclic_20e.py | 2 +- ...1voxel_second_secfpn_4x8_cyclic_20e_nus.py | 25 ------------------- ...pillar_second_secfpn_4x8_cyclic_20e_nus.py | 24 ------------------ 3 files changed, 1 insertion(+), 50 deletions(-) diff --git a/configs/_base_/schedules/cyclic_20e.py b/configs/_base_/schedules/cyclic_20e.py index aa5d83927b..c7df532525 100644 --- a/configs/_base_/schedules/cyclic_20e.py +++ b/configs/_base_/schedules/cyclic_20e.py @@ -1,6 +1,6 @@ # For nuScenes dataset, we usually evaluate the model at the end of training. # Since the models are trained by 24 epochs by default, we set evaluation -# interval to be 24. Please change the interval accordingly if you do not +# interval to be 20. Please change the interval accordingly if you do not # use a default schedule. # optimizer # This schedule is mainly used by models on nuScenes dataset diff --git a/configs/centerpoint/centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py b/configs/centerpoint/centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py index 23af6ecdf2..8a714f2630 100644 --- a/configs/centerpoint/centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py +++ b/configs/centerpoint/centerpoint_01voxel_second_secfpn_4x8_cyclic_20e_nus.py @@ -142,28 +142,3 @@ box_type_3d='LiDAR')), val=dict(pipeline=test_pipeline, classes=class_names), test=dict(pipeline=test_pipeline, classes=class_names)) - -# For nuScenes dataset, we usually evaluate the model at the end of training. -# Since the models are trained by 24 epochs by default, we set evaluation -# interval to be 24. Please change the interval accordingly if you do not -# use a default schedule. -# optimizer -# This schedule is mainly used by models on nuScenes dataset -optimizer = dict(type='AdamW', lr=1e-4, weight_decay=0.01) -# max_norm=10 is better for SECOND -optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) -lr_config = dict( - policy='cyclic', - target_ratio=(10, 1e-4), - cyclic_times=1, - step_ratio_up=0.4, -) -momentum_config = dict( - policy='cyclic', - target_ratio=(0.85 / 0.95, 1), - cyclic_times=1, - step_ratio_up=0.4, -) - -# runtime settings -total_epochs = 20 diff --git a/configs/centerpoint/centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py b/configs/centerpoint/centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py index b62e35ac48..e71210906a 100644 --- a/configs/centerpoint/centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py +++ b/configs/centerpoint/centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus.py @@ -141,27 +141,3 @@ box_type_3d='LiDAR')), val=dict(pipeline=test_pipeline, classes=class_names), test=dict(pipeline=test_pipeline, classes=class_names)) - -# For nuScenes dataset, we usually evaluate the model at the end of training. -# Since the models are trained by 24 epochs by default, we set evaluation -# interval to be 24. Please change the interval accordingly if you do not -# use a default schedule. - -optimizer = dict(type='AdamW', lr=1e-4, weight_decay=0.01) -# max_norm=10 is better for SECOND -optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) -lr_config = dict( - policy='cyclic', - target_ratio=(10, 1e-4), - cyclic_times=1, - step_ratio_up=0.4, -) -momentum_config = dict( - policy='cyclic', - target_ratio=(0.85 / 0.95, 1), - cyclic_times=1, - step_ratio_up=0.4, -) - -# runtime settings -total_epochs = 20