-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathbox_np_ops.py
827 lines (701 loc) · 30.2 KB
/
box_np_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
# Copyright (c) OpenMMLab. All rights reserved.
# TODO: clean the functions in this file and move the APIs into box structures
# in the future
# NOTICE: All functions in this file are valid for LiDAR or depth boxes only
# if we use default parameters.
import numba
import numpy as np
from .structures.utils import limit_period, points_cam2img, rotation_3d_in_axis
def camera_to_lidar(points, r_rect, velo2cam):
"""Convert points in camera coordinate to lidar coordinate.
Note:
This function is for KITTI only.
Args:
points (np.ndarray, shape=[N, 3]): Points in camera coordinate.
r_rect (np.ndarray, shape=[4, 4]): Matrix to project points in
specific camera coordinate (e.g. CAM2) to CAM0.
velo2cam (np.ndarray, shape=[4, 4]): Matrix to project points in
camera coordinate to lidar coordinate.
Returns:
np.ndarray, shape=[N, 3]: Points in lidar coordinate.
"""
points_shape = list(points.shape[0:-1])
if points.shape[-1] == 3:
points = np.concatenate([points, np.ones(points_shape + [1])], axis=-1)
lidar_points = points @ np.linalg.inv((r_rect @ velo2cam).T)
return lidar_points[..., :3]
def box_camera_to_lidar(data, r_rect, velo2cam):
"""Convert boxes in camera coordinate to lidar coordinate.
Note:
This function is for KITTI only.
Args:
data (np.ndarray, shape=[N, 7]): Boxes in camera coordinate.
r_rect (np.ndarray, shape=[4, 4]): Matrix to project points in
specific camera coordinate (e.g. CAM2) to CAM0.
velo2cam (np.ndarray, shape=[4, 4]): Matrix to project points in
camera coordinate to lidar coordinate.
Returns:
np.ndarray, shape=[N, 3]: Boxes in lidar coordinate.
"""
xyz = data[:, 0:3]
x_size, y_size, z_size = data[:, 3:4], data[:, 4:5], data[:, 5:6]
r = data[:, 6:7]
xyz_lidar = camera_to_lidar(xyz, r_rect, velo2cam)
# yaw and dims also needs to be converted
r_new = -r - np.pi / 2
r_new = limit_period(r_new, period=np.pi * 2)
return np.concatenate([xyz_lidar, x_size, z_size, y_size, r_new], axis=1)
def corners_nd(dims, origin=0.5):
"""Generate relative box corners based on length per dim and origin point.
Args:
dims (np.ndarray, shape=[N, ndim]): Array of length per dim
origin (list or array or float, optional): origin point relate to
smallest point. Defaults to 0.5
Returns:
np.ndarray, shape=[N, 2 ** ndim, ndim]: Returned corners.
point layout example: (2d) x0y0, x0y1, x1y0, x1y1;
(3d) x0y0z0, x0y0z1, x0y1z0, x0y1z1, x1y0z0, x1y0z1, x1y1z0, x1y1z1
where x0 < x1, y0 < y1, z0 < z1.
"""
ndim = int(dims.shape[1])
corners_norm = np.stack(
np.unravel_index(np.arange(2**ndim), [2] * ndim),
axis=1).astype(dims.dtype)
# now corners_norm has format: (2d) x0y0, x0y1, x1y0, x1y1
# (3d) x0y0z0, x0y0z1, x0y1z0, x0y1z1, x1y0z0, x1y0z1, x1y1z0, x1y1z1
# so need to convert to a format which is convenient to do other computing.
# for 2d boxes, format is clockwise start with minimum point
# for 3d boxes, please draw lines by your hand.
if ndim == 2:
# generate clockwise box corners
corners_norm = corners_norm[[0, 1, 3, 2]]
elif ndim == 3:
corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
corners_norm = corners_norm - np.array(origin, dtype=dims.dtype)
corners = dims.reshape([-1, 1, ndim]) * corners_norm.reshape(
[1, 2**ndim, ndim])
return corners
def center_to_corner_box2d(centers, dims, angles=None, origin=0.5):
"""Convert kitti locations, dimensions and angles to corners.
format: center(xy), dims(xy), angles(counterclockwise when positive)
Args:
centers (np.ndarray): Locations in kitti label file with shape (N, 2).
dims (np.ndarray): Dimensions in kitti label file with shape (N, 2).
angles (np.ndarray, optional): Rotation_y in kitti label file with
shape (N). Defaults to None.
origin (list or array or float, optional): origin point relate to
smallest point. Defaults to 0.5.
Returns:
np.ndarray: Corners with the shape of (N, 4, 2).
"""
# 'length' in kitti format is in x axis.
# xyz(hwl)(kitti label file)<->xyz(lhw)(camera)<->z(-x)(-y)(wlh)(lidar)
# center in kitti format is [0.5, 1.0, 0.5] in xyz.
corners = corners_nd(dims, origin=origin)
# corners: [N, 4, 2]
if angles is not None:
corners = rotation_3d_in_axis(corners, angles)
corners += centers.reshape([-1, 1, 2])
return corners
@numba.jit(nopython=True)
def depth_to_points(depth, trunc_pixel):
"""Convert depth map to points.
Args:
depth (np.array, shape=[H, W]): Depth map which
the row of [0~`trunc_pixel`] are truncated.
trunc_pixel (int): The number of truncated row.
Returns:
np.ndarray: Points in camera coordinates.
"""
num_pts = np.sum(depth[trunc_pixel:, ] > 0.1)
points = np.zeros((num_pts, 3), dtype=depth.dtype)
x = np.array([0, 0, 1], dtype=depth.dtype)
k = 0
for i in range(trunc_pixel, depth.shape[0]):
for j in range(depth.shape[1]):
if depth[i, j] > 0.1:
x = np.array([j, i, 1], dtype=depth.dtype)
points[k] = x * depth[i, j]
k += 1
return points
def depth_to_lidar_points(depth, trunc_pixel, P2, r_rect, velo2cam):
"""Convert depth map to points in lidar coordinate.
Args:
depth (np.array, shape=[H, W]): Depth map which
the row of [0~`trunc_pixel`] are truncated.
trunc_pixel (int): The number of truncated row.
P2 (p.array, shape=[4, 4]): Intrinsics of Camera2.
r_rect (np.ndarray, shape=[4, 4]): Matrix to project points in
specific camera coordinate (e.g. CAM2) to CAM0.
velo2cam (np.ndarray, shape=[4, 4]): Matrix to project points in
camera coordinate to lidar coordinate.
Returns:
np.ndarray: Points in lidar coordinates.
"""
pts = depth_to_points(depth, trunc_pixel)
points_shape = list(pts.shape[0:-1])
points = np.concatenate([pts, np.ones(points_shape + [1])], axis=-1)
points = points @ np.linalg.inv(P2.T)
lidar_points = camera_to_lidar(points, r_rect, velo2cam)
return lidar_points
def center_to_corner_box3d(centers,
dims,
angles=None,
origin=(0.5, 1.0, 0.5),
axis=1):
"""Convert kitti locations, dimensions and angles to corners.
Args:
centers (np.ndarray): Locations in kitti label file with shape (N, 3).
dims (np.ndarray): Dimensions in kitti label file with shape (N, 3).
angles (np.ndarray, optional): Rotation_y in kitti label file with
shape (N). Defaults to None.
origin (list or array or float, optional): Origin point relate to
smallest point. Use (0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0)
in lidar. Defaults to (0.5, 1.0, 0.5).
axis (int, optional): Rotation axis. 1 for camera and 2 for lidar.
Defaults to 1.
Returns:
np.ndarray: Corners with the shape of (N, 8, 3).
"""
# 'length' in kitti format is in x axis.
# yzx(hwl)(kitti label file)<->xyz(lhw)(camera)<->z(-x)(-y)(lwh)(lidar)
# center in kitti format is [0.5, 1.0, 0.5] in xyz.
corners = corners_nd(dims, origin=origin)
# corners: [N, 8, 3]
if angles is not None:
corners = rotation_3d_in_axis(corners, angles, axis=axis)
corners += centers.reshape([-1, 1, 3])
return corners
@numba.jit(nopython=True)
def box2d_to_corner_jit(boxes):
"""Convert box2d to corner.
Args:
boxes (np.ndarray, shape=[N, 5]): Boxes2d with rotation.
Returns:
box_corners (np.ndarray, shape=[N, 4, 2]): Box corners.
"""
num_box = boxes.shape[0]
corners_norm = np.zeros((4, 2), dtype=boxes.dtype)
corners_norm[1, 1] = 1.0
corners_norm[2] = 1.0
corners_norm[3, 0] = 1.0
corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype)
corners = boxes.reshape(num_box, 1, 5)[:, :, 2:4] * corners_norm.reshape(
1, 4, 2)
rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype)
box_corners = np.zeros((num_box, 4, 2), dtype=boxes.dtype)
for i in range(num_box):
rot_sin = np.sin(boxes[i, -1])
rot_cos = np.cos(boxes[i, -1])
rot_mat_T[0, 0] = rot_cos
rot_mat_T[0, 1] = rot_sin
rot_mat_T[1, 0] = -rot_sin
rot_mat_T[1, 1] = rot_cos
box_corners[i] = corners[i] @ rot_mat_T + boxes[i, :2]
return box_corners
@numba.njit
def corner_to_standup_nd_jit(boxes_corner):
"""Convert boxes_corner to aligned (min-max) boxes.
Args:
boxes_corner (np.ndarray, shape=[N, 2**dim, dim]): Boxes corners.
Returns:
np.ndarray, shape=[N, dim*2]: Aligned (min-max) boxes.
"""
num_boxes = boxes_corner.shape[0]
ndim = boxes_corner.shape[-1]
result = np.zeros((num_boxes, ndim * 2), dtype=boxes_corner.dtype)
for i in range(num_boxes):
for j in range(ndim):
result[i, j] = np.min(boxes_corner[i, :, j])
for j in range(ndim):
result[i, j + ndim] = np.max(boxes_corner[i, :, j])
return result
@numba.jit(nopython=True)
def corner_to_surfaces_3d_jit(corners):
"""Convert 3d box corners from corner function above to surfaces that
normal vectors all direct to internal.
Args:
corners (np.ndarray): 3d box corners with the shape of (N, 8, 3).
Returns:
np.ndarray: Surfaces with the shape of (N, 6, 4, 3).
"""
# box_corners: [N, 8, 3], must from corner functions in this module
num_boxes = corners.shape[0]
surfaces = np.zeros((num_boxes, 6, 4, 3), dtype=corners.dtype)
corner_idxes = np.array([
0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 1, 5, 6, 2, 0, 4, 5, 1, 3, 2, 6, 7
]).reshape(6, 4)
for i in range(num_boxes):
for j in range(6):
for k in range(4):
surfaces[i, j, k] = corners[i, corner_idxes[j, k]]
return surfaces
def rotation_points_single_angle(points, angle, axis=0):
"""Rotate points with a single angle.
Args:
points (np.ndarray, shape=[N, 3]]):
angle (np.ndarray, shape=[1]]):
axis (int, optional): Axis to rotate at. Defaults to 0.
Returns:
np.ndarray: Rotated points.
"""
# points: [N, 3]
rot_sin = np.sin(angle)
rot_cos = np.cos(angle)
if axis == 1:
rot_mat_T = np.array(
[[rot_cos, 0, rot_sin], [0, 1, 0], [-rot_sin, 0, rot_cos]],
dtype=points.dtype)
elif axis == 2 or axis == -1:
rot_mat_T = np.array(
[[rot_cos, rot_sin, 0], [-rot_sin, rot_cos, 0], [0, 0, 1]],
dtype=points.dtype)
elif axis == 0:
rot_mat_T = np.array(
[[1, 0, 0], [0, rot_cos, rot_sin], [0, -rot_sin, rot_cos]],
dtype=points.dtype)
else:
raise ValueError('axis should in range')
return points @ rot_mat_T, rot_mat_T
def box3d_to_bbox(box3d, P2):
"""Convert box3d in camera coordinates to bbox in image coordinates.
Args:
box3d (np.ndarray, shape=[N, 7]): Boxes in camera coordinate.
P2 (np.array, shape=[4, 4]): Intrinsics of Camera2.
Returns:
np.ndarray, shape=[N, 4]: Boxes 2d in image coordinates.
"""
box_corners = center_to_corner_box3d(
box3d[:, :3], box3d[:, 3:6], box3d[:, 6], [0.5, 1.0, 0.5], axis=1)
box_corners_in_image = points_cam2img(box_corners, P2)
# box_corners_in_image: [N, 8, 2]
minxy = np.min(box_corners_in_image, axis=1)
maxxy = np.max(box_corners_in_image, axis=1)
bbox = np.concatenate([minxy, maxxy], axis=1)
return bbox
def corner_to_surfaces_3d(corners):
"""convert 3d box corners from corner function above to surfaces that
normal vectors all direct to internal.
Args:
corners (np.ndarray): 3D box corners with shape of (N, 8, 3).
Returns:
np.ndarray: Surfaces with the shape of (N, 6, 4, 3).
"""
# box_corners: [N, 8, 3], must from corner functions in this module
surfaces = np.array([
[corners[:, 0], corners[:, 1], corners[:, 2], corners[:, 3]],
[corners[:, 7], corners[:, 6], corners[:, 5], corners[:, 4]],
[corners[:, 0], corners[:, 3], corners[:, 7], corners[:, 4]],
[corners[:, 1], corners[:, 5], corners[:, 6], corners[:, 2]],
[corners[:, 0], corners[:, 4], corners[:, 5], corners[:, 1]],
[corners[:, 3], corners[:, 2], corners[:, 6], corners[:, 7]],
]).transpose([2, 0, 1, 3])
return surfaces
def points_in_rbbox(points, rbbox, z_axis=2, origin=(0.5, 0.5, 0)):
"""Check points in rotated bbox and return indices.
Note:
This function is for counterclockwise boxes.
Args:
points (np.ndarray, shape=[N, 3+dim]): Points to query.
rbbox (np.ndarray, shape=[M, 7]): Boxes3d with rotation.
z_axis (int, optional): Indicate which axis is height.
Defaults to 2.
origin (tuple[int], optional): Indicate the position of
box center. Defaults to (0.5, 0.5, 0).
Returns:
np.ndarray, shape=[N, M]: Indices of points in each box.
"""
# TODO: this function is different from PointCloud3D, be careful
# when start to use nuscene, check the input
rbbox_corners = center_to_corner_box3d(
rbbox[:, :3], rbbox[:, 3:6], rbbox[:, 6], origin=origin, axis=z_axis)
surfaces = corner_to_surfaces_3d(rbbox_corners)
indices = points_in_convex_polygon_3d_jit(points[:, :3], surfaces)
return indices
def minmax_to_corner_2d(minmax_box):
"""Convert minmax box to corners2d.
Args:
minmax_box (np.ndarray, shape=[N, dims]): minmax boxes.
Returns:
np.ndarray: 2d corners of boxes
"""
ndim = minmax_box.shape[-1] // 2
center = minmax_box[..., :ndim]
dims = minmax_box[..., ndim:] - center
return center_to_corner_box2d(center, dims, origin=0.0)
def create_anchors_3d_range(feature_size,
anchor_range,
sizes=((3.9, 1.6, 1.56), ),
rotations=(0, np.pi / 2),
dtype=np.float32):
"""Create anchors 3d by range.
Args:
feature_size (list[float] | tuple[float]): Feature map size. It is
either a list of a tuple of [D, H, W](in order of z, y, and x).
anchor_range (torch.Tensor | list[float]): Range of anchors with
shape [6]. The order is consistent with that of anchors, i.e.,
(x_min, y_min, z_min, x_max, y_max, z_max).
sizes (list[list] | np.ndarray | torch.Tensor, optional):
Anchor size with shape [N, 3], in order of x, y, z.
Defaults to ((3.9, 1.6, 1.56), ).
rotations (list[float] | np.ndarray | torch.Tensor, optional):
Rotations of anchors in a single feature grid.
Defaults to (0, np.pi / 2).
dtype (type, optional): Data type. Defaults to np.float32.
Returns:
np.ndarray: Range based anchors with shape of
(*feature_size, num_sizes, num_rots, 7).
"""
anchor_range = np.array(anchor_range, dtype)
z_centers = np.linspace(
anchor_range[2], anchor_range[5], feature_size[0], dtype=dtype)
y_centers = np.linspace(
anchor_range[1], anchor_range[4], feature_size[1], dtype=dtype)
x_centers = np.linspace(
anchor_range[0], anchor_range[3], feature_size[2], dtype=dtype)
sizes = np.reshape(np.array(sizes, dtype=dtype), [-1, 3])
rotations = np.array(rotations, dtype=dtype)
rets = np.meshgrid(
x_centers, y_centers, z_centers, rotations, indexing='ij')
tile_shape = [1] * 5
tile_shape[-2] = int(sizes.shape[0])
for i in range(len(rets)):
rets[i] = np.tile(rets[i][..., np.newaxis, :], tile_shape)
rets[i] = rets[i][..., np.newaxis] # for concat
sizes = np.reshape(sizes, [1, 1, 1, -1, 1, 3])
tile_size_shape = list(rets[0].shape)
tile_size_shape[3] = 1
sizes = np.tile(sizes, tile_size_shape)
rets.insert(3, sizes)
ret = np.concatenate(rets, axis=-1)
return np.transpose(ret, [2, 1, 0, 3, 4, 5])
def center_to_minmax_2d(centers, dims, origin=0.5):
"""Center to minmax.
Args:
centers (np.ndarray): Center points.
dims (np.ndarray): Dimensions.
origin (list or array or float, optional): Origin point relate
to smallest point. Defaults to 0.5.
Returns:
np.ndarray: Minmax points.
"""
if origin == 0.5:
return np.concatenate([centers - dims / 2, centers + dims / 2],
axis=-1)
corners = center_to_corner_box2d(centers, dims, origin=origin)
return corners[:, [0, 2]].reshape([-1, 4])
def rbbox2d_to_near_bbox(rbboxes):
"""convert rotated bbox to nearest 'standing' or 'lying' bbox.
Args:
rbboxes (np.ndarray): Rotated bboxes with shape of
(N, 5(x, y, xdim, ydim, rad)).
Returns:
np.ndarray: Bounding boxes with the shape of
(N, 4(xmin, ymin, xmax, ymax)).
"""
rots = rbboxes[..., -1]
rots_0_pi_div_2 = np.abs(limit_period(rots, 0.5, np.pi))
cond = (rots_0_pi_div_2 > np.pi / 4)[..., np.newaxis]
bboxes_center = np.where(cond, rbboxes[:, [0, 1, 3, 2]], rbboxes[:, :4])
bboxes = center_to_minmax_2d(bboxes_center[:, :2], bboxes_center[:, 2:])
return bboxes
@numba.jit(nopython=True)
def iou_jit(boxes, query_boxes, mode='iou', eps=0.0):
"""Calculate box iou. Note that jit version runs ~10x faster than the
box_overlaps function in mmdet3d.core.evaluation.
Note:
This function is for counterclockwise boxes.
Args:
boxes (np.ndarray): Input bounding boxes with shape of (N, 4).
query_boxes (np.ndarray): Query boxes with shape of (K, 4).
mode (str, optional): IoU mode. Defaults to 'iou'.
eps (float, optional): Value added to denominator. Defaults to 0.
Returns:
np.ndarray: Overlap between boxes and query_boxes
with the shape of [N, K].
"""
N = boxes.shape[0]
K = query_boxes.shape[0]
overlaps = np.zeros((N, K), dtype=boxes.dtype)
for k in range(K):
box_area = ((query_boxes[k, 2] - query_boxes[k, 0] + eps) *
(query_boxes[k, 3] - query_boxes[k, 1] + eps))
for n in range(N):
iw = (
min(boxes[n, 2], query_boxes[k, 2]) -
max(boxes[n, 0], query_boxes[k, 0]) + eps)
if iw > 0:
ih = (
min(boxes[n, 3], query_boxes[k, 3]) -
max(boxes[n, 1], query_boxes[k, 1]) + eps)
if ih > 0:
if mode == 'iou':
ua = ((boxes[n, 2] - boxes[n, 0] + eps) *
(boxes[n, 3] - boxes[n, 1] + eps) + box_area -
iw * ih)
else:
ua = ((boxes[n, 2] - boxes[n, 0] + eps) *
(boxes[n, 3] - boxes[n, 1] + eps))
overlaps[n, k] = iw * ih / ua
return overlaps
def projection_matrix_to_CRT_kitti(proj):
"""Split projection matrix of KITTI.
Note:
This function is for KITTI only.
P = C @ [R|T]
C is upper triangular matrix, so we need to inverse CR and use QR
stable for all kitti camera projection matrix.
Args:
proj (p.array, shape=[4, 4]): Intrinsics of camera.
Returns:
tuple[np.ndarray]: Splited matrix of C, R and T.
"""
CR = proj[0:3, 0:3]
CT = proj[0:3, 3]
RinvCinv = np.linalg.inv(CR)
Rinv, Cinv = np.linalg.qr(RinvCinv)
C = np.linalg.inv(Cinv)
R = np.linalg.inv(Rinv)
T = Cinv @ CT
return C, R, T
def remove_outside_points(points, rect, Trv2c, P2, image_shape):
"""Remove points which are outside of image.
Note:
This function is for KITTI only.
Args:
points (np.ndarray, shape=[N, 3+dims]): Total points.
rect (np.ndarray, shape=[4, 4]): Matrix to project points in
specific camera coordinate (e.g. CAM2) to CAM0.
Trv2c (np.ndarray, shape=[4, 4]): Matrix to project points in
camera coordinate to lidar coordinate.
P2 (p.array, shape=[4, 4]): Intrinsics of Camera2.
image_shape (list[int]): Shape of image.
Returns:
np.ndarray, shape=[N, 3+dims]: Filtered points.
"""
# 5x faster than remove_outside_points_v1(2ms vs 10ms)
C, R, T = projection_matrix_to_CRT_kitti(P2)
image_bbox = [0, 0, image_shape[1], image_shape[0]]
frustum = get_frustum(image_bbox, C)
frustum -= T
frustum = np.linalg.inv(R) @ frustum.T
frustum = camera_to_lidar(frustum.T, rect, Trv2c)
frustum_surfaces = corner_to_surfaces_3d_jit(frustum[np.newaxis, ...])
indices = points_in_convex_polygon_3d_jit(points[:, :3], frustum_surfaces)
points = points[indices.reshape([-1])]
return points
def get_frustum(bbox_image, C, near_clip=0.001, far_clip=100):
"""Get frustum corners in camera coordinates.
Args:
bbox_image (list[int]): box in image coordinates.
C (np.ndarray): Intrinsics.
near_clip (float, optional): Nearest distance of frustum.
Defaults to 0.001.
far_clip (float, optional): Farthest distance of frustum.
Defaults to 100.
Returns:
np.ndarray, shape=[8, 3]: coordinates of frustum corners.
"""
fku = C[0, 0]
fkv = -C[1, 1]
u0v0 = C[0:2, 2]
z_points = np.array(
[near_clip] * 4 + [far_clip] * 4, dtype=C.dtype)[:, np.newaxis]
b = bbox_image
box_corners = np.array(
[[b[0], b[1]], [b[0], b[3]], [b[2], b[3]], [b[2], b[1]]],
dtype=C.dtype)
near_box_corners = (box_corners - u0v0) / np.array(
[fku / near_clip, -fkv / near_clip], dtype=C.dtype)
far_box_corners = (box_corners - u0v0) / np.array(
[fku / far_clip, -fkv / far_clip], dtype=C.dtype)
ret_xy = np.concatenate([near_box_corners, far_box_corners],
axis=0) # [8, 2]
ret_xyz = np.concatenate([ret_xy, z_points], axis=1)
return ret_xyz
def surface_equ_3d(polygon_surfaces):
"""
Args:
polygon_surfaces (np.ndarray): Polygon surfaces with shape of
[num_polygon, max_num_surfaces, max_num_points_of_surface, 3].
All surfaces' normal vector must direct to internal.
Max_num_points_of_surface must at least 3.
Returns:
tuple: normal vector and its direction.
"""
# return [a, b, c], d in ax+by+cz+d=0
# polygon_surfaces: [num_polygon, num_surfaces, num_points_of_polygon, 3]
surface_vec = polygon_surfaces[:, :, :2, :] - \
polygon_surfaces[:, :, 1:3, :]
# normal_vec: [..., 3]
normal_vec = np.cross(surface_vec[:, :, 0, :], surface_vec[:, :, 1, :])
# print(normal_vec.shape, points[..., 0, :].shape)
# d = -np.inner(normal_vec, points[..., 0, :])
d = np.einsum('aij, aij->ai', normal_vec, polygon_surfaces[:, :, 0, :])
return normal_vec, -d
@numba.njit
def _points_in_convex_polygon_3d_jit(points, polygon_surfaces, normal_vec, d,
num_surfaces):
"""
Args:
points (np.ndarray): Input points with shape of (num_points, 3).
polygon_surfaces (np.ndarray): Polygon surfaces with shape of
(num_polygon, max_num_surfaces, max_num_points_of_surface, 3).
All surfaces' normal vector must direct to internal.
Max_num_points_of_surface must at least 3.
normal_vec (np.ndarray): Normal vector of polygon_surfaces.
d (int): Directions of normal vector.
num_surfaces (np.ndarray): Number of surfaces a polygon contains
shape of (num_polygon).
Returns:
np.ndarray: Result matrix with the shape of [num_points, num_polygon].
"""
max_num_surfaces, max_num_points_of_surface = polygon_surfaces.shape[1:3]
num_points = points.shape[0]
num_polygons = polygon_surfaces.shape[0]
ret = np.ones((num_points, num_polygons), dtype=np.bool_)
sign = 0.0
for i in range(num_points):
for j in range(num_polygons):
for k in range(max_num_surfaces):
if k > num_surfaces[j]:
break
sign = (
points[i, 0] * normal_vec[j, k, 0] +
points[i, 1] * normal_vec[j, k, 1] +
points[i, 2] * normal_vec[j, k, 2] + d[j, k])
if sign >= 0:
ret[i, j] = False
break
return ret
def points_in_convex_polygon_3d_jit(points,
polygon_surfaces,
num_surfaces=None):
"""Check points is in 3d convex polygons.
Args:
points (np.ndarray): Input points with shape of (num_points, 3).
polygon_surfaces (np.ndarray): Polygon surfaces with shape of
(num_polygon, max_num_surfaces, max_num_points_of_surface, 3).
All surfaces' normal vector must direct to internal.
Max_num_points_of_surface must at least 3.
num_surfaces (np.ndarray, optional): Number of surfaces a polygon
contains shape of (num_polygon). Defaults to None.
Returns:
np.ndarray: Result matrix with the shape of [num_points, num_polygon].
"""
max_num_surfaces, max_num_points_of_surface = polygon_surfaces.shape[1:3]
# num_points = points.shape[0]
num_polygons = polygon_surfaces.shape[0]
if num_surfaces is None:
num_surfaces = np.full((num_polygons, ), 9999999, dtype=np.int64)
normal_vec, d = surface_equ_3d(polygon_surfaces[:, :, :3, :])
# normal_vec: [num_polygon, max_num_surfaces, 3]
# d: [num_polygon, max_num_surfaces]
return _points_in_convex_polygon_3d_jit(points, polygon_surfaces,
normal_vec, d, num_surfaces)
@numba.njit
def points_in_convex_polygon_jit(points, polygon, clockwise=False):
"""Check points is in 2d convex polygons. True when point in polygon.
Args:
points (np.ndarray): Input points with the shape of [num_points, 2].
polygon (np.ndarray): Input polygon with the shape of
[num_polygon, num_points_of_polygon, 2].
clockwise (bool, optional): Indicate polygon is clockwise. Defaults
to True.
Returns:
np.ndarray: Result matrix with the shape of [num_points, num_polygon].
"""
# first convert polygon to directed lines
num_points_of_polygon = polygon.shape[1]
num_points = points.shape[0]
num_polygons = polygon.shape[0]
# vec for all the polygons
if clockwise:
vec1 = polygon - polygon[:,
np.array([num_points_of_polygon - 1] + list(
range(num_points_of_polygon - 1))), :]
else:
vec1 = polygon[:,
np.array([num_points_of_polygon - 1] +
list(range(num_points_of_polygon -
1))), :] - polygon
ret = np.zeros((num_points, num_polygons), dtype=np.bool_)
success = True
cross = 0.0
for i in range(num_points):
for j in range(num_polygons):
success = True
for k in range(num_points_of_polygon):
vec = vec1[j, k]
cross = vec[1] * (polygon[j, k, 0] - points[i, 0])
cross -= vec[0] * (polygon[j, k, 1] - points[i, 1])
if cross >= 0:
success = False
break
ret[i, j] = success
return ret
def boxes3d_to_corners3d_lidar(boxes3d, bottom_center=True):
"""Convert kitti center boxes to corners.
7 -------- 4
/| /|
6 -------- 5 .
| | | |
. 3 -------- 0
|/ |/
2 -------- 1
Note:
This function is for LiDAR boxes only.
Args:
boxes3d (np.ndarray): Boxes with shape of (N, 7)
[x, y, z, x_size, y_size, z_size, ry] in LiDAR coords,
see the definition of ry in KITTI dataset.
bottom_center (bool, optional): Whether z is on the bottom center
of object. Defaults to True.
Returns:
np.ndarray: Box corners with the shape of [N, 8, 3].
"""
boxes_num = boxes3d.shape[0]
x_size, y_size, z_size = boxes3d[:, 3], boxes3d[:, 4], boxes3d[:, 5]
x_corners = np.array([
x_size / 2., -x_size / 2., -x_size / 2., x_size / 2., x_size / 2.,
-x_size / 2., -x_size / 2., x_size / 2.
],
dtype=np.float32).T
y_corners = np.array([
-y_size / 2., -y_size / 2., y_size / 2., y_size / 2., -y_size / 2.,
-y_size / 2., y_size / 2., y_size / 2.
],
dtype=np.float32).T
if bottom_center:
z_corners = np.zeros((boxes_num, 8), dtype=np.float32)
z_corners[:, 4:8] = z_size.reshape(boxes_num, 1).repeat(
4, axis=1) # (N, 8)
else:
z_corners = np.array([
-z_size / 2., -z_size / 2., -z_size / 2., -z_size / 2.,
z_size / 2., z_size / 2., z_size / 2., z_size / 2.
],
dtype=np.float32).T
ry = boxes3d[:, 6]
zeros, ones = np.zeros(
ry.size, dtype=np.float32), np.ones(
ry.size, dtype=np.float32)
rot_list = np.array([[np.cos(ry), np.sin(ry), zeros],
[-np.sin(ry), np.cos(ry), zeros],
[zeros, zeros, ones]]) # (3, 3, N)
R_list = np.transpose(rot_list, (2, 0, 1)) # (N, 3, 3)
temp_corners = np.concatenate((x_corners.reshape(
-1, 8, 1), y_corners.reshape(-1, 8, 1), z_corners.reshape(-1, 8, 1)),
axis=2) # (N, 8, 3)
rotated_corners = np.matmul(temp_corners, R_list) # (N, 8, 3)
x_corners = rotated_corners[:, :, 0]
y_corners = rotated_corners[:, :, 1]
z_corners = rotated_corners[:, :, 2]
x_loc, y_loc, z_loc = boxes3d[:, 0], boxes3d[:, 1], boxes3d[:, 2]
x = x_loc.reshape(-1, 1) + x_corners.reshape(-1, 8)
y = y_loc.reshape(-1, 1) + y_corners.reshape(-1, 8)
z = z_loc.reshape(-1, 1) + z_corners.reshape(-1, 8)
corners = np.concatenate(
(x.reshape(-1, 8, 1), y.reshape(-1, 8, 1), z.reshape(-1, 8, 1)),
axis=2)
return corners.astype(np.float32)