-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathvoxel_encoder.py
489 lines (431 loc) · 20.3 KB
/
voxel_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.cnn import build_norm_layer
from mmcv.ops import DynamicScatter
from mmcv.runner import force_fp32
from torch import nn
from .. import builder
from ..builder import VOXEL_ENCODERS
from .utils import VFELayer, get_paddings_indicator
@VOXEL_ENCODERS.register_module()
class HardSimpleVFE(nn.Module):
"""Simple voxel feature encoder used in SECOND.
It simply averages the values of points in a voxel.
Args:
num_features (int, optional): Number of features to use. Default: 4.
"""
def __init__(self, num_features=4):
super(HardSimpleVFE, self).__init__()
self.num_features = num_features
self.fp16_enabled = False
@force_fp32(out_fp16=True)
def forward(self, features, num_points, coors):
"""Forward function.
Args:
features (torch.Tensor): Point features in shape
(N, M, 3(4)). N is the number of voxels and M is the maximum
number of points inside a single voxel.
num_points (torch.Tensor): Number of points in each voxel,
shape (N, ).
coors (torch.Tensor): Coordinates of voxels.
Returns:
torch.Tensor: Mean of points inside each voxel in shape (N, 3(4))
"""
points_mean = features[:, :, :self.num_features].sum(
dim=1, keepdim=False) / num_points.type_as(features).view(-1, 1)
return points_mean.contiguous()
@VOXEL_ENCODERS.register_module()
class DynamicSimpleVFE(nn.Module):
"""Simple dynamic voxel feature encoder used in DV-SECOND.
It simply averages the values of points in a voxel.
But the number of points in a voxel is dynamic and varies.
Args:
voxel_size (tupe[float]): Size of a single voxel
point_cloud_range (tuple[float]): Range of the point cloud and voxels
"""
def __init__(self,
voxel_size=(0.2, 0.2, 4),
point_cloud_range=(0, -40, -3, 70.4, 40, 1)):
super(DynamicSimpleVFE, self).__init__()
self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)
self.fp16_enabled = False
@torch.no_grad()
@force_fp32(out_fp16=True)
def forward(self, features, coors):
"""Forward function.
Args:
features (torch.Tensor): Point features in shape
(N, 3(4)). N is the number of points.
coors (torch.Tensor): Coordinates of voxels.
Returns:
torch.Tensor: Mean of points inside each voxel in shape (M, 3(4)).
M is the number of voxels.
"""
# This function is used from the start of the voxelnet
# num_points: [concated_num_points]
features, features_coors = self.scatter(features, coors)
return features, features_coors
@VOXEL_ENCODERS.register_module()
class DynamicVFE(nn.Module):
"""Dynamic Voxel feature encoder used in DV-SECOND.
It encodes features of voxels and their points. It could also fuse
image feature into voxel features in a point-wise manner.
The number of points inside the voxel varies.
Args:
in_channels (int, optional): Input channels of VFE. Defaults to 4.
feat_channels (list(int), optional): Channels of features in VFE.
with_distance (bool, optional): Whether to use the L2 distance of
points to the origin point. Defaults to False.
with_cluster_center (bool, optional): Whether to use the distance
to cluster center of points inside a voxel. Defaults to False.
with_voxel_center (bool, optional): Whether to use the distance
to center of voxel for each points inside a voxel.
Defaults to False.
voxel_size (tuple[float], optional): Size of a single voxel.
Defaults to (0.2, 0.2, 4).
point_cloud_range (tuple[float], optional): The range of points
or voxels. Defaults to (0, -40, -3, 70.4, 40, 1).
norm_cfg (dict, optional): Config dict of normalization layers.
mode (str, optional): The mode when pooling features of points
inside a voxel. Available options include 'max' and 'avg'.
Defaults to 'max'.
fusion_layer (dict, optional): The config dict of fusion
layer used in multi-modal detectors. Defaults to None.
return_point_feats (bool, optional): Whether to return the features
of each points. Defaults to False.
"""
def __init__(self,
in_channels=4,
feat_channels=[],
with_distance=False,
with_cluster_center=False,
with_voxel_center=False,
voxel_size=(0.2, 0.2, 4),
point_cloud_range=(0, -40, -3, 70.4, 40, 1),
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
mode='max',
fusion_layer=None,
return_point_feats=False):
super(DynamicVFE, self).__init__()
assert mode in ['avg', 'max']
assert len(feat_channels) > 0
if with_cluster_center:
in_channels += 3
if with_voxel_center:
in_channels += 3
if with_distance:
in_channels += 1
self.in_channels = in_channels
self._with_distance = with_distance
self._with_cluster_center = with_cluster_center
self._with_voxel_center = with_voxel_center
self.return_point_feats = return_point_feats
self.fp16_enabled = False
# Need pillar (voxel) size and x/y offset in order to calculate offset
self.vx = voxel_size[0]
self.vy = voxel_size[1]
self.vz = voxel_size[2]
self.x_offset = self.vx / 2 + point_cloud_range[0]
self.y_offset = self.vy / 2 + point_cloud_range[1]
self.z_offset = self.vz / 2 + point_cloud_range[2]
self.point_cloud_range = point_cloud_range
self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)
feat_channels = [self.in_channels] + list(feat_channels)
vfe_layers = []
for i in range(len(feat_channels) - 1):
in_filters = feat_channels[i]
out_filters = feat_channels[i + 1]
if i > 0:
in_filters *= 2
norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
vfe_layers.append(
nn.Sequential(
nn.Linear(in_filters, out_filters, bias=False), norm_layer,
nn.ReLU(inplace=True)))
self.vfe_layers = nn.ModuleList(vfe_layers)
self.num_vfe = len(vfe_layers)
self.vfe_scatter = DynamicScatter(voxel_size, point_cloud_range,
(mode != 'max'))
self.cluster_scatter = DynamicScatter(
voxel_size, point_cloud_range, average_points=True)
self.fusion_layer = None
if fusion_layer is not None:
self.fusion_layer = builder.build_fusion_layer(fusion_layer)
def map_voxel_center_to_point(self, pts_coors, voxel_mean, voxel_coors):
"""Map voxel features to its corresponding points.
Args:
pts_coors (torch.Tensor): Voxel coordinate of each point.
voxel_mean (torch.Tensor): Voxel features to be mapped.
voxel_coors (torch.Tensor): Coordinates of valid voxels
Returns:
torch.Tensor: Features or centers of each point.
"""
# Step 1: scatter voxel into canvas
# Calculate necessary things for canvas creation
canvas_z = int(
(self.point_cloud_range[5] - self.point_cloud_range[2]) / self.vz)
canvas_y = int(
(self.point_cloud_range[4] - self.point_cloud_range[1]) / self.vy)
canvas_x = int(
(self.point_cloud_range[3] - self.point_cloud_range[0]) / self.vx)
# canvas_channel = voxel_mean.size(1)
batch_size = pts_coors[-1, 0] + 1
canvas_len = canvas_z * canvas_y * canvas_x * batch_size
# Create the canvas for this sample
canvas = voxel_mean.new_zeros(canvas_len, dtype=torch.long)
# Only include non-empty pillars
indices = (
voxel_coors[:, 0] * canvas_z * canvas_y * canvas_x +
voxel_coors[:, 1] * canvas_y * canvas_x +
voxel_coors[:, 2] * canvas_x + voxel_coors[:, 3])
# Scatter the blob back to the canvas
canvas[indices.long()] = torch.arange(
start=0, end=voxel_mean.size(0), device=voxel_mean.device)
# Step 2: get voxel mean for each point
voxel_index = (
pts_coors[:, 0] * canvas_z * canvas_y * canvas_x +
pts_coors[:, 1] * canvas_y * canvas_x +
pts_coors[:, 2] * canvas_x + pts_coors[:, 3])
voxel_inds = canvas[voxel_index.long()]
center_per_point = voxel_mean[voxel_inds, ...]
return center_per_point
@force_fp32(out_fp16=True)
def forward(self,
features,
coors,
points=None,
img_feats=None,
img_metas=None):
"""Forward functions.
Args:
features (torch.Tensor): Features of voxels, shape is NxC.
coors (torch.Tensor): Coordinates of voxels, shape is Nx(1+NDim).
points (list[torch.Tensor], optional): Raw points used to guide the
multi-modality fusion. Defaults to None.
img_feats (list[torch.Tensor], optional): Image features used for
multi-modality fusion. Defaults to None.
img_metas (dict, optional): [description]. Defaults to None.
Returns:
tuple: If `return_point_feats` is False, returns voxel features and
its coordinates. If `return_point_feats` is True, returns
feature of each points inside voxels.
"""
features_ls = [features]
# Find distance of x, y, and z from cluster center
if self._with_cluster_center:
voxel_mean, mean_coors = self.cluster_scatter(features, coors)
points_mean = self.map_voxel_center_to_point(
coors, voxel_mean, mean_coors)
# TODO: maybe also do cluster for reflectivity
f_cluster = features[:, :3] - points_mean[:, :3]
features_ls.append(f_cluster)
# Find distance of x, y, and z from pillar center
if self._with_voxel_center:
f_center = features.new_zeros(size=(features.size(0), 3))
f_center[:, 0] = features[:, 0] - (
coors[:, 3].type_as(features) * self.vx + self.x_offset)
f_center[:, 1] = features[:, 1] - (
coors[:, 2].type_as(features) * self.vy + self.y_offset)
f_center[:, 2] = features[:, 2] - (
coors[:, 1].type_as(features) * self.vz + self.z_offset)
features_ls.append(f_center)
if self._with_distance:
points_dist = torch.norm(features[:, :3], 2, 1, keepdim=True)
features_ls.append(points_dist)
# Combine together feature decorations
features = torch.cat(features_ls, dim=-1)
for i, vfe in enumerate(self.vfe_layers):
point_feats = vfe(features)
if (i == len(self.vfe_layers) - 1 and self.fusion_layer is not None
and img_feats is not None):
point_feats = self.fusion_layer(img_feats, points, point_feats,
img_metas)
voxel_feats, voxel_coors = self.vfe_scatter(point_feats, coors)
if i != len(self.vfe_layers) - 1:
# need to concat voxel feats if it is not the last vfe
feat_per_point = self.map_voxel_center_to_point(
coors, voxel_feats, voxel_coors)
features = torch.cat([point_feats, feat_per_point], dim=1)
if self.return_point_feats:
return point_feats
return voxel_feats, voxel_coors
@VOXEL_ENCODERS.register_module()
class HardVFE(nn.Module):
"""Voxel feature encoder used in DV-SECOND.
It encodes features of voxels and their points. It could also fuse
image feature into voxel features in a point-wise manner.
Args:
in_channels (int, optional): Input channels of VFE. Defaults to 4.
feat_channels (list(int), optional): Channels of features in VFE.
with_distance (bool, optional): Whether to use the L2 distance
of points to the origin point. Defaults to False.
with_cluster_center (bool, optional): Whether to use the distance
to cluster center of points inside a voxel. Defaults to False.
with_voxel_center (bool, optional): Whether to use the distance to
center of voxel for each points inside a voxel. Defaults to False.
voxel_size (tuple[float], optional): Size of a single voxel.
Defaults to (0.2, 0.2, 4).
point_cloud_range (tuple[float], optional): The range of points
or voxels. Defaults to (0, -40, -3, 70.4, 40, 1).
norm_cfg (dict, optional): Config dict of normalization layers.
mode (str, optional): The mode when pooling features of points inside a
voxel. Available options include 'max' and 'avg'.
Defaults to 'max'.
fusion_layer (dict, optional): The config dict of fusion layer
used in multi-modal detectors. Defaults to None.
return_point_feats (bool, optional): Whether to return the
features of each points. Defaults to False.
"""
def __init__(self,
in_channels=4,
feat_channels=[],
with_distance=False,
with_cluster_center=False,
with_voxel_center=False,
voxel_size=(0.2, 0.2, 4),
point_cloud_range=(0, -40, -3, 70.4, 40, 1),
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
mode='max',
fusion_layer=None,
return_point_feats=False):
super(HardVFE, self).__init__()
assert len(feat_channels) > 0
if with_cluster_center:
in_channels += 3
if with_voxel_center:
in_channels += 3
if with_distance:
in_channels += 1
self.in_channels = in_channels
self._with_distance = with_distance
self._with_cluster_center = with_cluster_center
self._with_voxel_center = with_voxel_center
self.return_point_feats = return_point_feats
self.fp16_enabled = False
# Need pillar (voxel) size and x/y offset to calculate pillar offset
self.vx = voxel_size[0]
self.vy = voxel_size[1]
self.vz = voxel_size[2]
self.x_offset = self.vx / 2 + point_cloud_range[0]
self.y_offset = self.vy / 2 + point_cloud_range[1]
self.z_offset = self.vz / 2 + point_cloud_range[2]
self.point_cloud_range = point_cloud_range
self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)
feat_channels = [self.in_channels] + list(feat_channels)
vfe_layers = []
for i in range(len(feat_channels) - 1):
in_filters = feat_channels[i]
out_filters = feat_channels[i + 1]
if i > 0:
in_filters *= 2
# TODO: pass norm_cfg to VFE
# norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
if i == (len(feat_channels) - 2):
cat_max = False
max_out = True
if fusion_layer:
max_out = False
else:
max_out = True
cat_max = True
vfe_layers.append(
VFELayer(
in_filters,
out_filters,
norm_cfg=norm_cfg,
max_out=max_out,
cat_max=cat_max))
self.vfe_layers = nn.ModuleList(vfe_layers)
self.num_vfe = len(vfe_layers)
self.fusion_layer = None
if fusion_layer is not None:
self.fusion_layer = builder.build_fusion_layer(fusion_layer)
@force_fp32(out_fp16=True)
def forward(self,
features,
num_points,
coors,
img_feats=None,
img_metas=None):
"""Forward functions.
Args:
features (torch.Tensor): Features of voxels, shape is MxNxC.
num_points (torch.Tensor): Number of points in each voxel.
coors (torch.Tensor): Coordinates of voxels, shape is Mx(1+NDim).
img_feats (list[torch.Tensor], optional): Image features used for
multi-modality fusion. Defaults to None.
img_metas (dict, optional): [description]. Defaults to None.
Returns:
tuple: If `return_point_feats` is False, returns voxel features and
its coordinates. If `return_point_feats` is True, returns
feature of each points inside voxels.
"""
features_ls = [features]
# Find distance of x, y, and z from cluster center
if self._with_cluster_center:
points_mean = (
features[:, :, :3].sum(dim=1, keepdim=True) /
num_points.type_as(features).view(-1, 1, 1))
# TODO: maybe also do cluster for reflectivity
f_cluster = features[:, :, :3] - points_mean
features_ls.append(f_cluster)
# Find distance of x, y, and z from pillar center
if self._with_voxel_center:
f_center = features.new_zeros(
size=(features.size(0), features.size(1), 3))
f_center[:, :, 0] = features[:, :, 0] - (
coors[:, 3].type_as(features).unsqueeze(1) * self.vx +
self.x_offset)
f_center[:, :, 1] = features[:, :, 1] - (
coors[:, 2].type_as(features).unsqueeze(1) * self.vy +
self.y_offset)
f_center[:, :, 2] = features[:, :, 2] - (
coors[:, 1].type_as(features).unsqueeze(1) * self.vz +
self.z_offset)
features_ls.append(f_center)
if self._with_distance:
points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
features_ls.append(points_dist)
# Combine together feature decorations
voxel_feats = torch.cat(features_ls, dim=-1)
# The feature decorations were calculated without regard to whether
# pillar was empty.
# Need to ensure that empty voxels remain set to zeros.
voxel_count = voxel_feats.shape[1]
mask = get_paddings_indicator(num_points, voxel_count, axis=0)
voxel_feats *= mask.unsqueeze(-1).type_as(voxel_feats)
for i, vfe in enumerate(self.vfe_layers):
voxel_feats = vfe(voxel_feats)
if (self.fusion_layer is not None and img_feats is not None):
voxel_feats = self.fusion_with_mask(features, mask, voxel_feats,
coors, img_feats, img_metas)
return voxel_feats
def fusion_with_mask(self, features, mask, voxel_feats, coors, img_feats,
img_metas):
"""Fuse image and point features with mask.
Args:
features (torch.Tensor): Features of voxel, usually it is the
values of points in voxels.
mask (torch.Tensor): Mask indicates valid features in each voxel.
voxel_feats (torch.Tensor): Features of voxels.
coors (torch.Tensor): Coordinates of each single voxel.
img_feats (list[torch.Tensor]): Multi-scale feature maps of image.
img_metas (list(dict)): Meta information of image and points.
Returns:
torch.Tensor: Fused features of each voxel.
"""
# the features is consist of a batch of points
batch_size = coors[-1, 0] + 1
points = []
for i in range(batch_size):
single_mask = (coors[:, 0] == i)
points.append(features[single_mask][mask[single_mask]])
point_feats = voxel_feats[mask]
point_feats = self.fusion_layer(img_feats, points, point_feats,
img_metas)
voxel_canvas = voxel_feats.new_zeros(
size=(voxel_feats.size(0), voxel_feats.size(1),
point_feats.size(-1)))
voxel_canvas[mask] = point_feats
out = torch.max(voxel_canvas, dim=1)[0]
return out