-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathloading.py
693 lines (582 loc) · 25.6 KB
/
loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
# Copyright (c) OpenMMLab. All rights reserved.
import mmcv
import numpy as np
from mmdet3d.core.points import BasePoints, get_points_type
from mmdet.datasets.pipelines import LoadAnnotations, LoadImageFromFile
from ..builder import PIPELINES
@PIPELINES.register_module()
class LoadMultiViewImageFromFiles(object):
"""Load multi channel images from a list of separate channel files.
Expects results['img_filename'] to be a list of filenames.
Args:
to_float32 (bool, optional): Whether to convert the img to float32.
Defaults to False.
color_type (str, optional): Color type of the file.
Defaults to 'unchanged'.
"""
def __init__(self, to_float32=False, color_type='unchanged'):
self.to_float32 = to_float32
self.color_type = color_type
def __call__(self, results):
"""Call function to load multi-view image from files.
Args:
results (dict): Result dict containing multi-view image filenames.
Returns:
dict: The result dict containing the multi-view image data.
Added keys and values are described below.
- filename (str): Multi-view image filenames.
- img (np.ndarray): Multi-view image arrays.
- img_shape (tuple[int]): Shape of multi-view image arrays.
- ori_shape (tuple[int]): Shape of original image arrays.
- pad_shape (tuple[int]): Shape of padded image arrays.
- scale_factor (float): Scale factor.
- img_norm_cfg (dict): Normalization configuration of images.
"""
filename = results['img_filename']
# img is of shape (h, w, c, num_views)
img = np.stack(
[mmcv.imread(name, self.color_type) for name in filename], axis=-1)
if self.to_float32:
img = img.astype(np.float32)
results['filename'] = filename
# unravel to list, see `DefaultFormatBundle` in formatting.py
# which will transpose each image separately and then stack into array
results['img'] = [img[..., i] for i in range(img.shape[-1])]
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
num_channels = 1 if len(img.shape) < 3 else img.shape[2]
results['img_norm_cfg'] = dict(
mean=np.zeros(num_channels, dtype=np.float32),
std=np.ones(num_channels, dtype=np.float32),
to_rgb=False)
return results
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(to_float32={self.to_float32}, '
repr_str += f"color_type='{self.color_type}')"
return repr_str
@PIPELINES.register_module()
class LoadImageFromFileMono3D(LoadImageFromFile):
"""Load an image from file in monocular 3D object detection. Compared to 2D
detection, additional camera parameters need to be loaded.
Args:
kwargs (dict): Arguments are the same as those in
:class:`LoadImageFromFile`.
"""
def __call__(self, results):
"""Call functions to load image and get image meta information.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded image and meta information.
"""
super().__call__(results)
results['cam2img'] = results['img_info']['cam_intrinsic']
return results
@PIPELINES.register_module()
class LoadPointsFromMultiSweeps(object):
"""Load points from multiple sweeps.
This is usually used for nuScenes dataset to utilize previous sweeps.
Args:
sweeps_num (int, optional): Number of sweeps. Defaults to 10.
load_dim (int, optional): Dimension number of the loaded points.
Defaults to 5.
use_dim (list[int], optional): Which dimension to use.
Defaults to [0, 1, 2, 4].
time_dim (int, optional): Which dimension to represent the timestamps
of each points. Defaults to 4.
file_client_args (dict, optional): Config dict of file clients,
refer to
https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
for more details. Defaults to dict(backend='disk').
pad_empty_sweeps (bool, optional): Whether to repeat keyframe when
sweeps is empty. Defaults to False.
remove_close (bool, optional): Whether to remove close points.
Defaults to False.
test_mode (bool, optional): If `test_mode=True`, it will not
randomly sample sweeps but select the nearest N frames.
Defaults to False.
"""
def __init__(self,
sweeps_num=10,
load_dim=5,
use_dim=[0, 1, 2, 4],
time_dim=4,
file_client_args=dict(backend='disk'),
pad_empty_sweeps=False,
remove_close=False,
test_mode=False):
self.load_dim = load_dim
self.sweeps_num = sweeps_num
self.use_dim = use_dim
self.time_dim = time_dim
assert time_dim < load_dim, \
f'Expect the timestamp dimension < {load_dim}, got {time_dim}'
self.file_client_args = file_client_args.copy()
self.file_client = None
self.pad_empty_sweeps = pad_empty_sweeps
self.remove_close = remove_close
self.test_mode = test_mode
assert max(use_dim) < load_dim, \
f'Expect all used dimensions < {load_dim}, got {use_dim}'
def _load_points(self, pts_filename):
"""Private function to load point clouds data.
Args:
pts_filename (str): Filename of point clouds data.
Returns:
np.ndarray: An array containing point clouds data.
"""
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
pts_bytes = self.file_client.get(pts_filename)
points = np.frombuffer(pts_bytes, dtype=np.float32)
except ConnectionError:
mmcv.check_file_exist(pts_filename)
if pts_filename.endswith('.npy'):
points = np.load(pts_filename)
else:
points = np.fromfile(pts_filename, dtype=np.float32)
return points
def _remove_close(self, points, radius=1.0):
"""Removes point too close within a certain radius from origin.
Args:
points (np.ndarray | :obj:`BasePoints`): Sweep points.
radius (float, optional): Radius below which points are removed.
Defaults to 1.0.
Returns:
np.ndarray: Points after removing.
"""
if isinstance(points, np.ndarray):
points_numpy = points
elif isinstance(points, BasePoints):
points_numpy = points.tensor.numpy()
else:
raise NotImplementedError
x_filt = np.abs(points_numpy[:, 0]) < radius
y_filt = np.abs(points_numpy[:, 1]) < radius
not_close = np.logical_not(np.logical_and(x_filt, y_filt))
return points[not_close]
def __call__(self, results):
"""Call function to load multi-sweep point clouds from files.
Args:
results (dict): Result dict containing multi-sweep point cloud
filenames.
Returns:
dict: The result dict containing the multi-sweep points data.
Added key and value are described below.
- points (np.ndarray | :obj:`BasePoints`): Multi-sweep point
cloud arrays.
"""
points = results['points']
points.tensor[:, self.time_dim] = 0
sweep_points_list = [points]
ts = results['timestamp']
if self.pad_empty_sweeps and len(results['sweeps']) == 0:
for i in range(self.sweeps_num):
if self.remove_close:
sweep_points_list.append(self._remove_close(points))
else:
sweep_points_list.append(points)
else:
if len(results['sweeps']) <= self.sweeps_num:
choices = np.arange(len(results['sweeps']))
elif self.test_mode:
choices = np.arange(self.sweeps_num)
else:
choices = np.random.choice(
len(results['sweeps']), self.sweeps_num, replace=False)
for idx in choices:
sweep = results['sweeps'][idx]
points_sweep = self._load_points(sweep['data_path'])
points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
if self.remove_close:
points_sweep = self._remove_close(points_sweep)
sweep_ts = sweep['timestamp'] / 1e6
points_sweep[:, :3] = points_sweep[:, :3] @ sweep[
'sensor2lidar_rotation'].T
points_sweep[:, :3] += sweep['sensor2lidar_translation']
points_sweep[:, self.time_dim] = ts - sweep_ts
points_sweep = points.new_point(points_sweep)
sweep_points_list.append(points_sweep)
points = points.cat(sweep_points_list)
points = points[:, self.use_dim]
results['points'] = points
return results
def __repr__(self):
"""str: Return a string that describes the module."""
return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'
@PIPELINES.register_module()
class PointSegClassMapping(object):
"""Map original semantic class to valid category ids.
Map valid classes as 0~len(valid_cat_ids)-1 and
others as len(valid_cat_ids).
Args:
valid_cat_ids (tuple[int]): A tuple of valid category.
max_cat_id (int, optional): The max possible cat_id in input
segmentation mask. Defaults to 40.
"""
def __init__(self, valid_cat_ids, max_cat_id=40):
assert max_cat_id >= np.max(valid_cat_ids), \
'max_cat_id should be greater than maximum id in valid_cat_ids'
self.valid_cat_ids = valid_cat_ids
self.max_cat_id = int(max_cat_id)
# build cat_id to class index mapping
neg_cls = len(valid_cat_ids)
self.cat_id2class = np.ones(
self.max_cat_id + 1, dtype=np.int) * neg_cls
for cls_idx, cat_id in enumerate(valid_cat_ids):
self.cat_id2class[cat_id] = cls_idx
def __call__(self, results):
"""Call function to map original semantic class to valid category ids.
Args:
results (dict): Result dict containing point semantic masks.
Returns:
dict: The result dict containing the mapped category ids.
Updated key and value are described below.
- pts_semantic_mask (np.ndarray): Mapped semantic masks.
"""
assert 'pts_semantic_mask' in results
pts_semantic_mask = results['pts_semantic_mask']
converted_pts_sem_mask = self.cat_id2class[pts_semantic_mask]
results['pts_semantic_mask'] = converted_pts_sem_mask
return results
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(valid_cat_ids={self.valid_cat_ids}, '
repr_str += f'max_cat_id={self.max_cat_id})'
return repr_str
@PIPELINES.register_module()
class NormalizePointsColor(object):
"""Normalize color of points.
Args:
color_mean (list[float]): Mean color of the point cloud.
"""
def __init__(self, color_mean):
self.color_mean = color_mean
def __call__(self, results):
"""Call function to normalize color of points.
Args:
results (dict): Result dict containing point clouds data.
Returns:
dict: The result dict containing the normalized points.
Updated key and value are described below.
- points (:obj:`BasePoints`): Points after color normalization.
"""
points = results['points']
assert points.attribute_dims is not None and \
'color' in points.attribute_dims.keys(), \
'Expect points have color attribute'
if self.color_mean is not None:
points.color = points.color - \
points.color.new_tensor(self.color_mean)
points.color = points.color / 255.0
results['points'] = points
return results
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(color_mean={self.color_mean})'
return repr_str
@PIPELINES.register_module()
class LoadPointsFromFile(object):
"""Load Points From File.
Load points from file.
Args:
coord_type (str): The type of coordinates of points cloud.
Available options includes:
- 'LIDAR': Points in LiDAR coordinates.
- 'DEPTH': Points in depth coordinates, usually for indoor dataset.
- 'CAMERA': Points in camera coordinates.
load_dim (int, optional): The dimension of the loaded points.
Defaults to 6.
use_dim (list[int], optional): Which dimensions of the points to use.
Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4
or use_dim=[0, 1, 2, 3] to use the intensity dimension.
shift_height (bool, optional): Whether to use shifted height.
Defaults to False.
use_color (bool, optional): Whether to use color features.
Defaults to False.
file_client_args (dict, optional): Config dict of file clients,
refer to
https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
for more details. Defaults to dict(backend='disk').
"""
def __init__(self,
coord_type,
load_dim=6,
use_dim=[0, 1, 2],
shift_height=False,
use_color=False,
file_client_args=dict(backend='disk')):
self.shift_height = shift_height
self.use_color = use_color
if isinstance(use_dim, int):
use_dim = list(range(use_dim))
assert max(use_dim) < load_dim, \
f'Expect all used dimensions < {load_dim}, got {use_dim}'
assert coord_type in ['CAMERA', 'LIDAR', 'DEPTH']
self.coord_type = coord_type
self.load_dim = load_dim
self.use_dim = use_dim
self.file_client_args = file_client_args.copy()
self.file_client = None
def _load_points(self, pts_filename):
"""Private function to load point clouds data.
Args:
pts_filename (str): Filename of point clouds data.
Returns:
np.ndarray: An array containing point clouds data.
"""
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
pts_bytes = self.file_client.get(pts_filename)
points = np.frombuffer(pts_bytes, dtype=np.float32)
except ConnectionError:
mmcv.check_file_exist(pts_filename)
if pts_filename.endswith('.npy'):
points = np.load(pts_filename)
else:
points = np.fromfile(pts_filename, dtype=np.float32)
return points
def __call__(self, results):
"""Call function to load points data from file.
Args:
results (dict): Result dict containing point clouds data.
Returns:
dict: The result dict containing the point clouds data.
Added key and value are described below.
- points (:obj:`BasePoints`): Point clouds data.
"""
pts_filename = results['pts_filename']
points = self._load_points(pts_filename)
points = points.reshape(-1, self.load_dim)
points = points[:, self.use_dim]
attribute_dims = None
if self.shift_height:
floor_height = np.percentile(points[:, 2], 0.99)
height = points[:, 2] - floor_height
points = np.concatenate(
[points[:, :3],
np.expand_dims(height, 1), points[:, 3:]], 1)
attribute_dims = dict(height=3)
if self.use_color:
assert len(self.use_dim) >= 6
if attribute_dims is None:
attribute_dims = dict()
attribute_dims.update(
dict(color=[
points.shape[1] - 3,
points.shape[1] - 2,
points.shape[1] - 1,
]))
points_class = get_points_type(self.coord_type)
points = points_class(
points, points_dim=points.shape[-1], attribute_dims=attribute_dims)
results['points'] = points
return results
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__ + '('
repr_str += f'shift_height={self.shift_height}, '
repr_str += f'use_color={self.use_color}, '
repr_str += f'file_client_args={self.file_client_args}, '
repr_str += f'load_dim={self.load_dim}, '
repr_str += f'use_dim={self.use_dim})'
return repr_str
@PIPELINES.register_module()
class LoadPointsFromDict(LoadPointsFromFile):
"""Load Points From Dict."""
def __call__(self, results):
assert 'points' in results
return results
@PIPELINES.register_module()
class LoadAnnotations3D(LoadAnnotations):
"""Load Annotations3D.
Load instance mask and semantic mask of points and
encapsulate the items into related fields.
Args:
with_bbox_3d (bool, optional): Whether to load 3D boxes.
Defaults to True.
with_label_3d (bool, optional): Whether to load 3D labels.
Defaults to True.
with_attr_label (bool, optional): Whether to load attribute label.
Defaults to False.
with_mask_3d (bool, optional): Whether to load 3D instance masks.
for points. Defaults to False.
with_seg_3d (bool, optional): Whether to load 3D semantic masks.
for points. Defaults to False.
with_bbox (bool, optional): Whether to load 2D boxes.
Defaults to False.
with_label (bool, optional): Whether to load 2D labels.
Defaults to False.
with_mask (bool, optional): Whether to load 2D instance masks.
Defaults to False.
with_seg (bool, optional): Whether to load 2D semantic masks.
Defaults to False.
with_bbox_depth (bool, optional): Whether to load 2.5D boxes.
Defaults to False.
poly2mask (bool, optional): Whether to convert polygon annotations
to bitmasks. Defaults to True.
seg_3d_dtype (dtype, optional): Dtype of 3D semantic masks.
Defaults to int64
file_client_args (dict): Config dict of file clients, refer to
https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
for more details.
"""
def __init__(self,
with_bbox_3d=True,
with_label_3d=True,
with_attr_label=False,
with_mask_3d=False,
with_seg_3d=False,
with_bbox=False,
with_label=False,
with_mask=False,
with_seg=False,
with_bbox_depth=False,
poly2mask=True,
seg_3d_dtype=np.int64,
file_client_args=dict(backend='disk')):
super().__init__(
with_bbox,
with_label,
with_mask,
with_seg,
poly2mask,
file_client_args=file_client_args)
self.with_bbox_3d = with_bbox_3d
self.with_bbox_depth = with_bbox_depth
self.with_label_3d = with_label_3d
self.with_attr_label = with_attr_label
self.with_mask_3d = with_mask_3d
self.with_seg_3d = with_seg_3d
self.seg_3d_dtype = seg_3d_dtype
def _load_bboxes_3d(self, results):
"""Private function to load 3D bounding box annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded 3D bounding box annotations.
"""
results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
results['bbox3d_fields'].append('gt_bboxes_3d')
return results
def _load_bboxes_depth(self, results):
"""Private function to load 2.5D bounding box annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded 2.5D bounding box annotations.
"""
results['centers2d'] = results['ann_info']['centers2d']
results['depths'] = results['ann_info']['depths']
return results
def _load_labels_3d(self, results):
"""Private function to load label annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded label annotations.
"""
results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
return results
def _load_attr_labels(self, results):
"""Private function to load label annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded label annotations.
"""
results['attr_labels'] = results['ann_info']['attr_labels']
return results
def _load_masks_3d(self, results):
"""Private function to load 3D mask annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded 3D mask annotations.
"""
pts_instance_mask_path = results['ann_info']['pts_instance_mask_path']
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
mask_bytes = self.file_client.get(pts_instance_mask_path)
pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int64)
except ConnectionError:
mmcv.check_file_exist(pts_instance_mask_path)
pts_instance_mask = np.fromfile(
pts_instance_mask_path, dtype=np.int64)
results['pts_instance_mask'] = pts_instance_mask
results['pts_mask_fields'].append('pts_instance_mask')
return results
def _load_semantic_seg_3d(self, results):
"""Private function to load 3D semantic segmentation annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing the semantic segmentation annotations.
"""
pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path']
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
mask_bytes = self.file_client.get(pts_semantic_mask_path)
# add .copy() to fix read-only bug
pts_semantic_mask = np.frombuffer(
mask_bytes, dtype=self.seg_3d_dtype).copy()
except ConnectionError:
mmcv.check_file_exist(pts_semantic_mask_path)
pts_semantic_mask = np.fromfile(
pts_semantic_mask_path, dtype=np.int64)
results['pts_semantic_mask'] = pts_semantic_mask
results['pts_seg_fields'].append('pts_semantic_mask')
return results
def __call__(self, results):
"""Call function to load multiple types annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded 3D bounding box, label, mask and
semantic segmentation annotations.
"""
results = super().__call__(results)
if self.with_bbox_3d:
results = self._load_bboxes_3d(results)
if results is None:
return None
if self.with_bbox_depth:
results = self._load_bboxes_depth(results)
if results is None:
return None
if self.with_label_3d:
results = self._load_labels_3d(results)
if self.with_attr_label:
results = self._load_attr_labels(results)
if self.with_mask_3d:
results = self._load_masks_3d(results)
if self.with_seg_3d:
results = self._load_semantic_seg_3d(results)
return results
def __repr__(self):
"""str: Return a string that describes the module."""
indent_str = ' '
repr_str = self.__class__.__name__ + '(\n'
repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, '
repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, '
repr_str += f'{indent_str}with_attr_label={self.with_attr_label}, '
repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, '
repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, '
repr_str += f'{indent_str}with_bbox={self.with_bbox}, '
repr_str += f'{indent_str}with_label={self.with_label}, '
repr_str += f'{indent_str}with_mask={self.with_mask}, '
repr_str += f'{indent_str}with_seg={self.with_seg}, '
repr_str += f'{indent_str}with_bbox_depth={self.with_bbox_depth}, '
repr_str += f'{indent_str}poly2mask={self.poly2mask})'
return repr_str