-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco-panoptic.py
62 lines (60 loc) · 2.02 KB
/
mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco-panoptic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco-panoptic.py']
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa
depths = [2, 2, 6, 2]
model = dict(
type='Mask2Former',
backbone=dict(
_delete_=True,
type='SwinTransformer',
embed_dims=96,
depths=depths,
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.3,
patch_norm=True,
out_indices=(0, 1, 2, 3),
with_cp=False,
convert_weights=True,
frozen_stages=-1,
init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
panoptic_head=dict(
type='Mask2FormerHead', in_channels=[96, 192, 384, 768]),
init_cfg=None)
# set all layers in backbone to lr_mult=0.1
# set all norm layers, position_embeding,
# query_embeding, level_embeding to decay_multi=0.0
backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0)
backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0)
embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
custom_keys = {
'backbone': dict(lr_mult=0.1, decay_mult=1.0),
'backbone.patch_embed.norm': backbone_norm_multi,
'backbone.norm': backbone_norm_multi,
'absolute_pos_embed': backbone_embed_multi,
'relative_position_bias_table': backbone_embed_multi,
'query_embed': embed_multi,
'query_feat': embed_multi,
'level_embed': embed_multi
}
custom_keys.update({
f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi
for stage_id, num_blocks in enumerate(depths)
for block_id in range(num_blocks)
})
custom_keys.update({
f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi
for stage_id in range(len(depths) - 1)
})
# optimizer
optimizer = dict(
type='AdamW',
lr=0.0001,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999),
paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))