-
Notifications
You must be signed in to change notification settings - Fork 74
/
utils.py
295 lines (256 loc) · 8.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import torch.nn as nn
import torch
from torch.nn import functional as F
from PIL import Image
import numpy as np
import pandas as pd
import random
import numbers
import torchvision
def poly_lr_scheduler(optimizer, init_lr, iter, lr_decay_iter=1,
max_iter=300, power=0.9):
"""Polynomial decay of learning rate
:param init_lr is base learning rate
:param iter is a current iteration
:param lr_decay_iter how frequently decay occurs, default is 1
:param max_iter is number of maximum iterations
:param power is a polymomial power
"""
# if iter % lr_decay_iter or iter > max_iter:
# return optimizer
lr = init_lr*(1 - iter/max_iter)**power
optimizer.param_groups[0]['lr'] = lr
return lr
# return lr
def get_label_info(csv_path):
# return label -> {label_name: [r_value, g_value, b_value, ...}
ann = pd.read_csv(csv_path)
label = {}
for iter, row in ann.iterrows():
label_name = row['name']
r = row['r']
g = row['g']
b = row['b']
class_11 = row['class_11']
label[label_name] = [int(r), int(g), int(b), class_11]
return label
def one_hot_it(label, label_info):
# return semantic_map -> [H, W]
semantic_map = np.zeros(label.shape[:-1])
for index, info in enumerate(label_info):
color = label_info[info]
# colour_map = np.full((label.shape[0], label.shape[1], label.shape[2]), colour, dtype=int)
equality = np.equal(label, color)
class_map = np.all(equality, axis=-1)
semantic_map[class_map] = index
# semantic_map.append(class_map)
# semantic_map = np.stack(semantic_map, axis=-1)
return semantic_map
def one_hot_it_v11(label, label_info):
# return semantic_map -> [H, W, class_num]
semantic_map = np.zeros(label.shape[:-1])
# from 0 to 11, and 11 means void
class_index = 0
for index, info in enumerate(label_info):
color = label_info[info][:3]
class_11 = label_info[info][3]
if class_11 == 1:
# colour_map = np.full((label.shape[0], label.shape[1], label.shape[2]), colour, dtype=int)
equality = np.equal(label, color)
class_map = np.all(equality, axis=-1)
# semantic_map[class_map] = index
semantic_map[class_map] = class_index
class_index += 1
else:
equality = np.equal(label, color)
class_map = np.all(equality, axis=-1)
semantic_map[class_map] = 11
return semantic_map
def one_hot_it_v11_dice(label, label_info):
# return semantic_map -> [H, W, class_num]
semantic_map = []
void = np.zeros(label.shape[:2])
for index, info in enumerate(label_info):
color = label_info[info][:3]
class_11 = label_info[info][3]
if class_11 == 1:
# colour_map = np.full((label.shape[0], label.shape[1], label.shape[2]), colour, dtype=int)
equality = np.equal(label, color)
class_map = np.all(equality, axis=-1)
# semantic_map[class_map] = index
semantic_map.append(class_map)
else:
equality = np.equal(label, color)
class_map = np.all(equality, axis=-1)
void[class_map] = 1
semantic_map.append(void)
semantic_map = np.stack(semantic_map, axis=-1).astype(np.float)
return semantic_map
def reverse_one_hot(image):
"""
Transform a 2D array in one-hot format (depth is num_classes),
to a 2D array with only 1 channel, where each pixel value is
the classified class key.
# Arguments
image: The one-hot format image
# Returns
A 2D array with the same width and height as the input, but
with a depth size of 1, where each pixel value is the classified
class key.
"""
# w = image.shape[0]
# h = image.shape[1]
# x = np.zeros([w,h,1])
# for i in range(0, w):
# for j in range(0, h):
# index, value = max(enumerate(image[i, j, :]), key=operator.itemgetter(1))
# x[i, j] = index
image = image.permute(1, 2, 0)
x = torch.argmax(image, dim=-1)
return x
def colour_code_segmentation(image, label_values):
"""
Given a 1-channel array of class keys, colour code the segmentation results.
# Arguments
image: single channel array where each value represents the class key.
label_values
# Returns
Colour coded image for segmentation visualization
"""
# w = image.shape[0]
# h = image.shape[1]
# x = np.zeros([w,h,3])
# colour_codes = label_values
# for i in range(0, w):
# for j in range(0, h):
# x[i, j, :] = colour_codes[int(image[i, j])]
label_values = [label_values[key][:3] for key in label_values if label_values[key][3] == 1]
label_values.append([0, 0, 0])
colour_codes = np.array(label_values)
x = colour_codes[image.astype(int)]
return x
def compute_global_accuracy(pred, label):
pred = pred.flatten()
label = label.flatten()
total = len(label)
count = 0.0
for i in range(total):
if pred[i] == label[i]:
count = count + 1.0
return float(count) / float(total)
def fast_hist(a, b, n):
'''
a and b are predict and mask respectively
n is the number of classes
'''
k = (a >= 0) & (a < n)
return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n)
def per_class_iu(hist):
epsilon = 1e-5
return (np.diag(hist) + epsilon) / (hist.sum(1) + hist.sum(0) - np.diag(hist) + epsilon)
class RandomCrop(object):
"""Crop the given PIL Image at a random location.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
padding (int or sequence, optional): Optional padding on each border
of the image. Default is 0, i.e no padding. If a sequence of length
4 is provided, it is used to pad left, top, right, bottom borders
respectively.
pad_if_needed (boolean): It will pad the image if smaller than the
desired size to avoid raising an exception.
"""
def __init__(self, size, seed, padding=0, pad_if_needed=False):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.pad_if_needed = pad_if_needed
self.seed = seed
@staticmethod
def get_params(img, output_size, seed):
"""Get parameters for ``crop`` for a random crop.
Args:
img (PIL Image): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
random.seed(seed)
w, h = img.size
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
if self.padding > 0:
img = torchvision.transforms.functional.pad(img, self.padding)
# pad the width if needed
if self.pad_if_needed and img.size[0] < self.size[1]:
img = torchvision.transforms.functional.pad(img, (int((1 + self.size[1] - img.size[0]) / 2), 0))
# pad the height if needed
if self.pad_if_needed and img.size[1] < self.size[0]:
img = torchvision.transforms.functional.pad(img, (0, int((1 + self.size[0] - img.size[1]) / 2)))
i, j, h, w = self.get_params(img, self.size, self.seed)
return torchvision.transforms.functional.crop(img, i, j, h, w)
def __repr__(self):
return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)
def cal_miou(miou_list, csv_path):
# return label -> {label_name: [r_value, g_value, b_value, ...}
ann = pd.read_csv(csv_path)
miou_dict = {}
cnt = 0
for iter, row in ann.iterrows():
label_name = row['name']
class_11 = int(row['class_11'])
if class_11 == 1:
miou_dict[label_name] = miou_list[cnt]
cnt += 1
return miou_dict, np.mean(miou_list)
class OHEM_CrossEntroy_Loss(nn.Module):
def __init__(self, threshold, keep_num):
super(OHEM_CrossEntroy_Loss, self).__init__()
self.threshold = threshold
self.keep_num = keep_num
self.loss_function = nn.CrossEntropyLoss(reduction='none')
def forward(self, output, target):
loss = self.loss_function(output, target).view(-1)
loss, loss_index = torch.sort(loss, descending=True)
threshold_in_keep_num = loss[self.keep_num]
if threshold_in_keep_num > self.threshold:
loss = loss[loss>self.threshold]
else:
loss = loss[:self.keep_num]
return torch.mean(loss)
def group_weight(weight_group, module, norm_layer, lr):
group_decay = []
group_no_decay = []
for m in module.modules():
if isinstance(m, nn.Linear):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, (nn.Conv2d, nn.Conv3d)):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, norm_layer) or isinstance(m, nn.GroupNorm):
if m.weight is not None:
group_no_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
assert len(list(module.parameters())) == len(group_decay) + len(
group_no_decay)
weight_group.append(dict(params=group_decay, lr=lr))
weight_group.append(dict(params=group_no_decay, weight_decay=.0, lr=lr))
return weight_group