diff --git a/Project.toml b/Project.toml index 11d69002363..90d27bdc572 100644 --- a/Project.toml +++ b/Project.toml @@ -31,7 +31,7 @@ AlgebraicSolving = "0.4.6" Distributed = "1.6" DocStringExtensions = "0.8, 0.9" GAP = "0.10.2" -Hecke = "0.26.2" +Hecke = "0.27.0" JSON = "^0.20, ^0.21" JSON3 = "1.13.2" LazyArtifacts = "1.6" diff --git a/src/Modules/ModulesGraded.jl b/src/Modules/ModulesGraded.jl index 0f042855620..f4f50f798cb 100644 --- a/src/Modules/ModulesGraded.jl +++ b/src/Modules/ModulesGraded.jl @@ -160,8 +160,8 @@ Z^2 julia> g = gens(G) 2-element Vector{FinGenAbGroupElem}: - Abelian group element [1, 0] - Abelian group element [0, 1] + [1, 0] + [0, 1] julia> W = [g[1], g[1], g[2], g[2], g[2]]; diff --git a/src/PolyhedralGeometry/Polyhedron/properties.jl b/src/PolyhedralGeometry/Polyhedron/properties.jl index 4feaf6dc723..6c786ffab08 100644 --- a/src/PolyhedralGeometry/Polyhedron/properties.jl +++ b/src/PolyhedralGeometry/Polyhedron/properties.jl @@ -903,7 +903,7 @@ Number of vertices in each facet. # Example ```jldoctest julia> p = johnson_solid(4) -Polytope in ambient dimension 3 with EmbeddedNumFieldElem{AbsSimpleNumFieldElem} type coefficients +Polytope in ambient dimension 3 with EmbeddedAbsSimpleNumFieldElem type coefficients julia> facet_sizes(p) 10-element Vector{Int64}: diff --git a/src/PolyhedralGeometry/Polyhedron/standard_constructions.jl b/src/PolyhedralGeometry/Polyhedron/standard_constructions.jl index 2de8c88cfd4..88d61bfc149 100644 --- a/src/PolyhedralGeometry/Polyhedron/standard_constructions.jl +++ b/src/PolyhedralGeometry/Polyhedron/standard_constructions.jl @@ -790,7 +790,7 @@ below. # Examples ```jldoctest julia> T = platonic_solid("icosahedron") -Polytope in ambient dimension 3 with EmbeddedNumFieldElem{AbsSimpleNumFieldElem} type coefficients +Polytope in ambient dimension 3 with EmbeddedAbsSimpleNumFieldElem type coefficients julia> number_of_facets(T) 20 @@ -1906,7 +1906,7 @@ Create an $8$-dimensional polytope without rational realizations due to Perles. # Example ```jldoctest julia> perles_nonrational_8_polytope() -Polytope in ambient dimension 8 with EmbeddedNumFieldElem{AbsSimpleNumFieldElem} type coefficients +Polytope in ambient dimension 8 with EmbeddedAbsSimpleNumFieldElem type coefficients ``` """ perles_nonrational_8_polytope() = diff --git a/src/Rings/mpoly-graded.jl b/src/Rings/mpoly-graded.jl index 5721cbe3289..fc642530f32 100644 --- a/src/Rings/mpoly-graded.jl +++ b/src/Rings/mpoly-graded.jl @@ -325,8 +325,8 @@ Finitely generated abelian group julia> W = [gen(G, 1)+gen(G, 2), gen(G, 1)] 2-element Vector{FinGenAbGroupElem}: - Abelian group element [1, 1] - Abelian group element [1, 0] + [1, 1] + [1, 0] julia> S, (x, y) = graded_polynomial_ring(QQ, ["x", "y"]; weights = W) (Graded multivariate polynomial ring in 2 variables over QQ, MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}[x, y]) @@ -491,8 +491,8 @@ Z^2 julia> g = gens(G) 2-element Vector{FinGenAbGroupElem}: - Abelian group element [1, 0] - Abelian group element [0, 1] + [1, 0] + [0, 1] julia> W = [g[1], g[1], g[2], g[2], g[2]]; @@ -531,11 +531,11 @@ julia> g = gens(G); julia> W = [g[1]+g[3]+g[4], g[2]+g[4], g[1]+g[3], g[2], g[1]+g[2]] 5-element Vector{FinGenAbGroupElem}: - Abelian group element [1, 0, 1, 1] - Abelian group element [0, 1, 0, 1] - Abelian group element [1, 0, 1, 0] - Abelian group element [0, 1, 0, 0] - Abelian group element [1, 1, 0, 0] + [1, 0, 1, 1] + [0, 1, 0, 1] + [1, 0, 1, 0] + [0, 1, 0, 0] + [1, 1, 0, 0] julia> S, x = grade(R, W) (Graded multivariate polynomial ring in 5 variables over QQ, MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}[x[1], x[2], x[3], x[4], x[5]])