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Objectives

® Grasp the problem of out-of-distribution generalization in time series and its
specific characteristics

e Understand the current landscape of methods

® Recognize the open challenges and opportunities for further exploration
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Real-world scenarios and motivation




Real-world examples of time series predictive tasks facing out-of-distribution data
challenges.
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Stock market forecasting

Stock market exhibits instability due to changing external conditions, e.g., different
economic conditions, regulations, and trading behaviors.
DJIA History 2017-2020
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Movement of the Dow Jones Industrial Average (DJIA) between 01/2017 and 12/2020,
showing the pre-crash high on 12/02/2020, and the subsequent crash during the COVID-19
pandemic and recovery to new highs to close 2020.

Image credits: Wikipedia
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https://en.wikipedia.org/wiki/2020_stock_market_crash

Physiological data analysis

Patient sensor data (e.g., heart rate, ambulatory blood pressure (ABP)) show different
distributions due to varying physical conditions and events.

60~ 1 60
=] =
40~

ABPSys 40 ABPSys
spo2 ----8p02
20- e ABPDias || L ABPDias
|——ABPMean | o — ABPMean
cO 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
(a) Patient A (b) Patient B

Multivariate time series data of patients. Patient A had experienced Arterial Hypotensive
Episode (AHE) events, whereas Patient B did not.

Image credits: [Sun et al., 2010]
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Image credits: marketingcharts.com

Product demand forecasting

In retail, product demand and sales patterns sometimes shift over time, resulting in
distribution changes due to unexpected buying behaviors or economic fluctuations.

- marketing
:il charts

US Holiday Season Retail Sales Growth
2002-2019

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Retail Federation (NRF)

cember.

Incorporating new products or opening new stores in a retail chain also introduces new

data distributions.
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Vehicle intention prediction

Autonomous vehicles need to navigate in dynamically changing environments, e.g.,

unexpected road scenarios such as obstacles, emergency vehicles, and other vehicles
breaking down.

Image credits: [Wen et al., 2020a]
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Systematic failure

A model trained on time series data fails when faced with new, unseen data, as

® the model's predictive accuracy can be compromised by data shifts, and

® the lack of abundant data on various real-world conditions for machine learning
training.
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To address this ...

Out-of-distribution generalization in time series

® Models are expected to generalize to unseen scenarios/domains in time series
predictive tasks.
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Background



Preliminaries of time series
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Time series data

Time series is a sequence of data points indexed in time order.
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Plot of daily average max and min temperature in Boulder CO.

Image credits: Physical Sciences Laboratory
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Characteristics of time series data

Many time series exhibit one or more of the following characteristics:

® Trends, seasonal, cycle, irregular

Irregular Cyclical
fluctuations

Trend Seasonal

1 2 3 4 5 6 i 8 9 10 1" 12 13

Year

Image credits: Github of Ashish Patel
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Time series predictive tasks

Some popular predictive tasks that model time series data.
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Traditional time series models

® Autoregressive (AR)

P
= Z SOI-Xt—I' + Et,
i=1
where p is the order, ¢1,..., ¢, are model parameters, and ¢; is white noise.
® Moving Average (MA)
Simple moving average (SMA), Z pi

lnk+1

where k is the window size, and n is the total number of observed values.
® Autoregressive Integrated Moving Average (ARIMA)
AR + MA + | (preliminary differencing procedure)
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Advanced time series methods

e Multilayer Perceptron (MLP) ® Transformer [Vaswani et al., 2017]
Input layer Output layer Qutput
Probabilities
>

Add & Norm
Feed
Forward
Add & Norm
Multi-Head

, 2017]

® Long Short-Term Memory Networks

(Add & Norm ]

v . i
8 (LSTMs) [Hochreiter and s s 2l | R
g N Add & Norm
Schmidhuber, 1997] Nx ——
>, Multi-Head Multi-Head
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/?source=post_page-----b3996e6a0296--------------------------------

Preliminaries of out-of-distribution (OOD) generalization
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ibution shifts in OOD generalization

Distribution shifts denote the training distribution differs from the test distribution.

—— Training distribution

2] —— Test distribution
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Two types of distribution shifts

Domain generalization

Domain generallzatlon (OUI’ fOCUS) Train (sketch, cartoon) Test (unseen domains)

® Train and test on disjoint sets o »
f ) »
of domains. 9 | P

y =dog y = horse y = horse y =dog
d = sketch d = cartoon d = art painting d = photo
Subpopulation shift Subpopulation shift
.. . Train (mixture of domains) Test (sketch) Test (cartoon)
® Training and test domains
overlap, but their relative ) ‘g
proportions differ. ' : ) (5195
y=dog y = horse y = horse y =dog
d = sketch d = cartoon d = sketch d = cartoon
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Formal definition of domain generalization

Domain: A domain is composed of data samples that are sampled from a distribution,
denoted as D¢ = {(X9, Y9)}" ~ PY(X, Y). Data samples (X, Y) consists of the
input observation X and the corresponding label Y.

Domain generalization (DG): Given M training (source) domains

Dirain = {Di\i =1,...,M}. The goal of DG is to learn a generalizable predictive
function h: X — Y from the M training domains to achieve a minimum prediction
error on unseen test domains Diest (i-€., P/(X, Y) # P*(X, Y)):

min E(x y)eDe [L(A(X), V)],
where E is the expectation and (-, -) is the loss function.
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Overview of DG methodology

] Data Data augmentation ]
manipulation Data generation |
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Others |

Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.

Image credits: A Tutorial on Domain Generalization
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Data manipulation

Manipulating the inputs to assist in learning general representations, by increasing data
quality and quantity.

min Eox vy [E(h(X, V)] + Ege v [E(A(X", V)]

® Domain randomization (DR) [Yue et al., 2019]: Randomly draw K real-life
categories from ImageNet for stylizing the source images.

Auxiliary
Domains

Image credits: [Yue et al., 2019]
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Image credits: [Ganin and Lempitsky, 2015]

Representation learning

Learning domain-invariant representations or disentangling the features into
domain-shared or domain-specific parts.

® Domain adversarial neural network (DANN) [Ganin and Lempitsky, 2015]: Adopt
a gradient reversal layer and update the feature extractor to fool the domain
classifier by generating domain-invariant representations.
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Image credits: [Li et al., 2018]

Learning strategy

Exploiting learning strategies, such as meta-learning, ensemble learning, and gradient
operation, to promote the generalization capability.

® Meta-learning Domain Generalization (MLDG) [Li et al., 2018]: Simulate
train/test domain shift during training by synthesizing virtual testing domains
within each mini-batch.

Algorithm 1 Meta-Learning Domain Generalization

. . 1: procedure MLDG
Source Domains Target Domains 2 Tnput: Domains S
T 7%, ‘T Init: Model parameters ©. Hyperparameters o, 3, .
i <> <><> Meta-trg for ite in iterations do

Split: Sand S + S

3

4
i <> 5
<><><> <><> 6 Meta-train: Gradients Ve = F5(S; 0)
H o Test 7 Updated parameters ©' = © — aVg

. On On " 8 Meta-test: Loss is G(S; ©').
OOOOOO 9 Meta-optimization: Update ©
0n 0 S S0
00205 o6, 2F(5:0)+66(5:0 aVe))

00

10: end for
11: end procedure
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Image credits: A Tutorial on Domain Generalization

Applications for DG

Wide applications across CV, NLP, RL, and others.

Image classification

Sketch Cartoon Art painting Photo
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Problems and challenges



Recap: Formal definition of domain generalization

Domain: A domain is composed of data samples that are sampled from a distribution,
denoted as D¢ = {(X9, Y9)}" ~ PY(X, Y). Data samples (X, Y) consists of the
input observation X and the corresponding label Y.

Domain generalization (DG): Given M training (source) domains

Dirain = {Di\i =1,...,M}. The goal of DG is to learn a generalizable predictive
function h: X — Y from the M training domains to achieve a minimum prediction
error on unseen test domains Diest (i-€., P/(X, Y) # P*(X, Y)):

min E(x y)eDe [L(A(X), V)],
where E is the expectation and (-, -) is the loss function.
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DG in time series predictive tasks

A few distinctions from the standard setting:

Data samples: (X, Y) consist of the time series input X = [x¢]tcs,, where S; is the
set of time steps, and the set of labels Y = [y¢];cs,, where S, C S, is the set of
labeled time steps.

Two types of domains:

, 2022]

® Source-domain: distribution shifts across data sources.

® Time-domain: distribution shifts over time.

(a)Raw Data Samples  (b) Source Domains (c) Time Domains

Domain A _Domain B_ Domain C

Image credits: [Gagnon-Audet et al



DG challenges in time series predictive tasks

Defining domains

® |nvariant characteristics should exist across domains for effective generalization.

® Distribution within a time series may shift over time; subdomains may exist.
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DG challenges in time series predictive tasks

Temporal dependencies

® Modeling temporal dependencies while capturing domains’ invariant
characteristics.

Day i

, 2018]

Day i+1

Time

An illustration of daily dependencies of traffic flow time series.

Image credits: [Feng et al
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Image credits: Blog of Serafeim Loukas

DG challenges in time series predictive tasks

Continuous output space

® Dealing with unbounded and potentially infinite output values in forecasting tasks.

TESLA Stock Price Prediction

— Real TESLA Stock Price

14001 pregicted TESLA Stock Price

1200

1000

TESLA Stock Price

400

20180912 201871121 20190206 20190418 20190701 20190911 20191120 2020-02-04 2020.04-16 20200626

Real and predicted TESLA stock price.
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Methodology



Overview of OOD generalization methodology in time series

OOD generalization in

time series
Domain generalization Subpopulation shift
Data Representation Learning
manipulation learning strategy
Data L Adversarial Graph Causality- Gradient
. Regularization : inspired .
augmentation learning models b o operation
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Data augmentation

OOD generalization in
time series

|

|

Domain generalization Subpopulation shift

l

!

l

Data Representation Learning
manipulation learning strategy
Data L Adversarial Graph Causality- Gradient

. Regularization ; inspired :
augmentation learning models methods operation
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Image credits: [Le Guennec et al., 2016]

Data augmentation for time series classification

Paper: Data Augmentation for Time Series Classification using Convolutional Neural
Networks [Le Guennec et al., 2016]

Two data augmentations are used:

® Window slicing (WS): Divide the time series into slices, each of which is assigned
to the same class.

® Window warping (WW): Warp a randomly selected slice of a time series by
speeding it up or down.

3 I|

part will be warped

-

0 20 10 60 80 7
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, 2016]

Image credits: [Le Guennec et al

Impact of data augmentation on time series classification

Both WS and WW methods help improve classification performance on UCR
Archive [Chen et al., 2015].
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Domain-wise time series augmentation

Paper: Domain Generalization via Selective Consistency Regularization for Time Series
Classification [Zhang et al., 2022]

. Time series
® For each source domain, sample an a augmentation
- - . @«
augmentation function from a pre-defined £
_ distribution at each iteration. The domain-wise 8 AT
g . . . . (7] ime series
8 augmentation simulates potential test-time E
. . =3
domain shifts. %

AN
Domain Time series
Cc augmentation

Image credits: [Zhang et al
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Time series augmentation methods

Three time series augmentation methods are considered in this work.

Augmentation General Expression

mean shift amean(Z) = — B+ pnew

scaling ascale(T) = (z_;li) * Onew + 4
. y z[i] w.p. 0.9

T T

Applying data augmentations improves model performance on the Bearings (Detect
bearings faults in rotating machines) dataset.

Aug Avg Acc (%)
None 822
Mean shift 83.0
Scale 82.4
Mask 824
All 86.5
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The choice of augmentations methods

The choice of augmentations depends on the dataset to avoid perturbing
characteristics known to be important for classification.

On HHAR (Heterogeneity human activity recognition) dataset, limited augmentation,
i.e., scaling with 4 =0,0 =1 and opew ~ Unif(0.8,1.2), is applied since mean and
standard deviation are key classification features.

Sit Walk
20 20

151 15
104 10
T
O’\/\/\/\'\"’"’_‘\/\"\\’\/\’\/ 0
=51 -5
—101 -10

— —x
-154{ Y -15{ Y
—z —

-20 : ‘ ; ‘ -20 : ‘ ‘ .
0 100 200 300 400 0 100 200 300 400

v

Accelerometer time series plots (for each axis) of a static activity “Sit" and a dynamic activity
“Walk™.
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Summary of data augmentation

Limited data augmentation research in DG for time series tasks.

Advantages

® |ncrease data quantity

® Easy to understand and simple to implement
Disadvantages

® |ack of theoretical guarantee
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Regularization

OOD generalization in
time series
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Regularization

These methods introduce regularization terms into the model’s objective function to
enhance domain generalization by learning better representations, e.g.,
domain-invariant representations.

The overall objective can be expressed as:

Lobj = Lmodel + >\Lreg

Note that L,e; does not mean L1/L2 norm that prevent overfitting in general.
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Selective cross-domain consistency regularization

Paper: Domain Generalization via Selective Consistency Regularization for Time Series
Classification [Zhang et al., 2022]

Existing Methods Proposed Method

OD

domains
QQ
(o]

L P '

Tzzz2 \
Sl

.—»

.00
'CO —
e
&S

Selectively aligning
source domains

Aligning all source

Learn model parameters such that the class conditional distribution is invariant for
closely related domains according to latent inter-domain relationships.
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Selective cross-domain consistency regularization

Impose greater regularization on more similar domains:

M

L
L=, w(D\D) 3 187 - &™|I3
—_

I=1

i Domain 5|m||ar|ty Difference of mean logit vectors of domains for class /

where gP"/ is the mean logit vector for domain D’ class /, referred to as the
class-conditional domain centroid.
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Defining domain similarity — metadata based similarity

Domain metadata (i.e., descriptions of source domain data) is available:

® Use metadata to infer relationships by grouping the domains into clusters.

® Only domains within a cluster are assumed to share class relationships and are
subject to regularization.

Dl _ zc,l
L& = Z > leg 7113

c=1pieS. |

where S, is the set of domains in cluster c. v/ is the mean logit vector for domain
cluster ¢ class /, denoted class-conditional cluster centroid.
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Defining domain similarity — learned similarity

Domain metadata is not available:

® Measure domain distance using the squared L2 distance of their class-conditional
domain centroids.
® Regularization applies to each domain and its nearest neighbor domain.

m RBF kernel is applied on the inter-domain distance with hyperparameter &.

i 1 ZL exp(w> d’ is nearest to d’ for most classes
Wlearned(Dl7 DJ) =4t =1 26 ’

0, Otherwise
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Cross-domain regularizations with difficulty awareness

Paper: Domain Generalization in Time Series Forecasting [Deng et al., 2024]

This work focuses on the scenario where time series domains share certain common

attributes (e.g., same seasonality and trend) and exhibit no abrupt distribution shifts
within a single domain.

0 750
500

-5 250
0-

Propose the domain discrepancy regularization, and an extended version by
incorporating a notion of domain difficulty awareness (named CEDAR).

Image credits: [Deng et al., 2024]
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Domain discrepancy regularization

Dissimilar training domains should not exhibit significant variations in forecasting

performance:

M
LDD - Z dH(Di’ Dj) : d‘cfcst (Di’ DJ)

J Distribution divergence Difference in mean forecasting performance

where dy(, ) calculates the discrepancy of high-level representation of two domains
(e.g., RNN hidden states). dr,(,) computes the Euclidean distance between two
domain-averaged losses.

The regularization term aims to prevent severe overfitting in all source domains.
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Domain discrepancy regularization with domain difficulty awareness

A scaling factor is introduced to adjust the penalty to account for the difficulty of the

domains:

M
Lppp = »_ dy (D', D) - dp, (D', DY) - w(D', DY)
ij A . Y
scaling factor that modulates the penalty

The scaling factor is based on standard deviations of losses:

1

w(Di, DJ) - Std(ﬁfcst(Di)) + Std(ﬁfcst(Dj)) +e

Higher loss variance implies greater challenges in training. A smaller penalty is applied
to that domain, allowing the model more flexibility to learn from its data.
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Domain performance analysis

CEDAR achieves more even loss distributions for some training domains (e.g., 6-9),
which denotes less underfitting and overfitting. CEDAR also shows notable

performance improvements across all test domains.

7.5 DeepAR -Cedar | I

5.0

2.5

0.0 I ¥ II I II I
25 |z 11

1t 2 3 4 5 6 7 8 9 0 11 12
Training domain Test domain

Loss

Forecasting performance by domains of the base model and CEDAR on Stock-volume.

Image credits: [Deng et al., 2024]
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Image credits: Slater et al. [2021]

Such DG methods might not be useful for non-stationary time series, because:

e Complex distributions exist within a time series, i.e., it contains many unknown
sub-distributions.

(a) Stationary (b) Nonstationary

! WMWW mWMM’MMﬁ"ﬁ‘uﬁw

Time

Magnitude
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Adaptive learning and forecasting for time series

Paper: AdaRNN: Adaptive Learning and Forecasting for Time Series [Du et al., 2021]

A two-stage approach AdaRNN is proposed to generalize non-stationary time series.
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Temporal Covariate Shift: P4 # Pp # P¢ # Prest

1. Temporal distribution characterization segments time series into multiple domains.

2. Temporal distribution matching matches distribution gaps of domains.

Image credits: Du et al. [2021]
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Temporal distribution characterization (TDC)

Identify the most distinct periods/domains within a time max%ZiJ-d(Di,Dj)
series, which represents the worst case of temporal
covariate shift since the cross-domain distributions are the
most diverse.

Solve an optimization problem:

K
1 PR
max- E d(D', D)
iJ

al., 2021]

where d(,) can be any distance function.

Raw training data

A greedy algorithm is used.

Image credits: [Dt
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Image credits: [Du et al., 2021]

Temporal distribution matching (TDM)

Once the time domains are obtained, learn
common knowledge shared by different domains

. . . . . . Leam = z:i.J'Z~¥=1ait.jD(hlg’hlg) . Shared encoder
via matching their distributions.

. Shared decoder

Lpred = Zi mse (yi’ ?l)

5i 5i 5l
Ye-1 Y& Ven1

Given a domain-pair (D', DY), the loss of TDM
is formulated as:

i
Lum(D', D:6, @) = af ;d(hf, h; 0)
t=1

where afj denotes the distribution importance e I e
b . . i D E Nl
between D' and D’ at t. S ;
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Temporal distribution matching (TDM)

The final objective (one RNN layer) is:

K
2 PR
L(0, ) = Lprea(8) + Am Z’; Ligm(D', DY; 0, )

where « is leaned through a boosting-based importance evaluation algorithm.
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Adversarial learning

Adversarial learning is a technique used in machine learning to fool a model with
malicious input.

In DG, adversarial learning is designed to learn representations that are invariant to
domain variations.

® E.g., a discriminator is trained to identify different domains, while a generator is
simultaneously trained to fool the discriminator, leading to domain-agnostic
features [Ganin and Lempitsky, 2015].

Mostly studied in classification tasks.
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Out-of-distribution representation learning for time series classification

Paper: Out-of-Distribution Representation Learning for Time Series Classification [Lu
et al., 2022]

Propose an end-to-end approach, DIVERSIFY incorporating adversarial learning for
out-of-distribution representation learning on non-stationary times series.

Time series: Domain label Misclassified sub-domains if
unknown we treat it as one distribution
T
4 i
8 254
P 2
/_A
o
S — VIR iy * %
Py p, L_°°

Image credits: [Lu et al
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I

2

Image credits: [Lu et al.,

The framework of DIVERSIFY

Raw input & Fine-grained Latent distribution Domain-invariant |
1| Preprocessing feature update characterization feature learning |

Feature extractor

Bottleneck

gl

[ Classifier ] | Linear ‘
BE

)
=

Self-sup
pseudo domain label

‘Ccls

blass label
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Fine-grained feature update

Propose pseudo domain-class label to supervisea

feature extractor. Features are more fine-grained ""'A““‘\,w\w;» Feature extractor |—
w.r.t. domains and labels.

The supervised loss is:

Lsuper = E(x,y)N]P’“(hC(hbf(x))7 5)

. . S=KxcC| 1,2,---,8
Treat per category per domain as a new class with

label s € {1,2,...,5 = K x C}. K is the number
of latent distributions/domains and C is the
number of labels. s = d’ x C + y where d’ is the
domain label initialized to 0.

, 2022]

Image credits: [Lu et al
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Latent distribution characterization

Employ a self-supervised pseudo-labeling strategy to obtain domain labels.

1. Obtain the initial centroid for each (latent) domain:

— | Feature extractor —
_ Dxex Ok(he(hpr(x7))) - hpe(x;)

> xiextr Ok(he(hbr(xi)))

Bottleneck
where 0y is the k" element of the logit softmax output.

x
\
1
1

2. Obtain the pseudo domain labels according to the [ Classifier ] | Linear |
— . A Yo
8 nearest centroid: l : i

. Luay [ [cssrer ]
d'; = argming Dis(hpf(x;), fik) Self-supervised e
pseudo domain label

Class label

Image credits: [Lu et al
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Latent distribution characterization

3. Compute the centroids again and obtain the updated
pseudo domain labels.

— | Feature extractor —

Y exer 1(d'i = k) - hir(x;)
Lk = Z IL(J’- — k) Bottleneck
x; €X't r

A

F - - >

dlf = argminkDiS(hbf(Xi),Mk) [ Classifier ] | Linear |
A A
l : ' %
]  —
. | | Luy [ omsiter ]
.4 Compute the self-supervised pseudo domain loss Lsf Self-supervised e
and the classification loss L. pseudo domain label . W
. . . Las
Use adversarial training, i.e., gradient reversal layer Class label

(GRL) [Ganin and Lempitsky, 2015] to learn features for
classifying domains that disregard class information.

Image credits: [Lu et al.,
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Domain-invariant representation learning

Given the learned domain labels, update the | Feature extractor
classification loss L.s and domain classifier loss
Lgom using adversarial training. Bottleneck
A l A
The gradient reversal layers help learn key features : -
. ] o . . [ Classifier ] | Linear I
for classification while eliminating domain-specific j ) o
. . i |
information. X L L
T L Classifier
I i ;
Class label l 9
oo L
Ldom
Domain labe

Repeat these steps until convergence or max epochs.

Image credits: [Lu et al.,
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Temporal domain generalization with drift-aware dynamic neural network

Paper: Temporal Domain Generalization with Drift-Aware Dynamic Neural
Networks [Bai et al., 2022]

Build a time-sensitive model, DRAIN, using dynamic neural networks to achieve
temporal domain generalization.

’ # users :

# users # users

# users # users

80M 120M 170 M 320M 400 M o
# tweets # tweets # tweets # tweets # tweets
110B 120 B 130 B 200B 220B

# Avg. # Avg. # Avg. # Avg. following # Avg. following
370 390 430 570 620
time
2010 2011 2012 2013 2022 2023 (Future)

An illustrative example of temporal domain generalization.

Image credits: [Bai et al., 2022]
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Problem formulation — temporal domain generalization

Given source/training domains Dy, Ds, ... Dt where we assume the distribution of
Di,t=1,2,... T evolves over time and temporal drift across time is not too high.
Train Deploy

The goal is to infer the shifting decision boundary and extrapolate it to target domain
Dt,1 in the immediate future.

il SN ‘ \\

t=1 2 3 T+1 T+2
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A probabilistic view of concept drift in temporal domain generalization

Propose a Bayesian framework to characterize the temporal data distribution drift and
its influence on models, namely P(w¢|D;).

Predict w1 given all training data D;.7:

Pwri1|Dy.7) = / P(wriiwi.7,D1.7) - P(W1.7|D1.7) dwy.r
Q

-~

inference training
Decompose the training phase:
T
P(wy.r|Dy.7) = [ | P(wslws—1, D1.7)
s=1

= P(w1|Dy) - P(wa|wy, Dip) - - - P(wr|wi.7-1, D1.7)
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Neural network with dynamic parameters

Treat the time-evolving model parameters w; as a dynamic graph to achieve a fully
time-sensitive model.

Use an edge-weighted graph G = (V, E, w) to represent a neural network. w

represents the entire set of parameters for the neural network.

Assume the topology of the neural network is given, i.e., V, E are fixed and w is
changing w.r.t time.

Image credits: [Bai et al., 2022]
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The framework of DRAIN

Leverage the sequential model to learn the temporal drift adaptively and to predict the
model parameters on the future domain.

Training

{ \
I{ o |
|
| ! l I
: b I
|
! I | \ R
| |
| |
| . - » “recioaT |
; ' I I
| s I || Encoding | | Decoding |
) : Decoding Encoding Decoding Encoding | .. Decoding l || Function | | Function |
S | Function Fg Function G, Function Fg Function G, Function Fg | : Gy, Fe l
: | [ ' [ |
- | ) 1} | | t I
8 o & & i |
é : ...... S ‘I | :
. | |
& L9 e — | A Lt /
E e e e T e e e N T
g — Forward propagation <= = Backward propagation ~~_~ Decision boundary @ Skip connection
&
@
E
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Causality is a relationship between two events, in which one event causes an effect on
the other event.

ICE CREAM

DRY, HOT AND SUNNY
SUMMER WEATHER

SUNBURN

Image credits: Blog of Luke Worthington
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Causal-based time series domain generalization

Paper: Causal-based Time Series Domain Generalization for Vehicle Intention
Prediction [Hu et al., 2022]

Propose the Causal-based Time Series Domain Generalization (CTSDG) model, which
constructs a structural causal model for vehicle intention prediction (i.e., predict
interaction outcomes such as pass/yield).

e

= b ) )
7\ |

[llustration of selected domains for driving scenarios. Black arrow line (—) represents a
reference path and red circles () are intersecting points.

, 2022]

Image credits: [Hu et al
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e framework of CTSDG

A causal view of data generating process under vehicle interaction settings.
® Domain (D): map properties, e.g., road topology,
speed limit, and traffic rules.

® Event (E): two-vehicle interactions, e.g., initial states
and the length of interaction

® Driver (O): driver's driving preferences

® X: vehicle interactive trajectories; multivariate time

, 2022]

Shaded/transparent nodes are series

observed/latent variables. Directed ® 7: latent representations

edge denotes a causal relationship.

Dashed edges denote correlation. Y vehicle intention label

Xc/Xnc: causal/non-causal features

Image credits: [Hu et al
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Invariance condition

According to the causal framework, X¢ causes Y,
and by d-separation, we have Y 1 D|Xc.

Learn a g(-) maps X to Z, ¢(-) maps Z to Xc and a
classifier h(-) maps Xc to Y.

, 2022]

Shaded/transparent nodes are

Minimize the prediction loss:
observed/latent variables. Directed

edge denotes a causal relationship. Lys = LOSS(h(¢(q(X))), y)
Dashed edges denote correlation.

Image credits: [Hu et al
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Invariance condition

By d-separation, X¢ also needs to satisfy the
invariance condition X¢c L D|{E, O}.

However, O is unobservable and there may not be a
same E across domains.

Instead, assume that the distance over X between

Shaded/transparent nodes are same-class inputs from different domains is bounded.
observed/latent variables. Directed Minimize the distance:
edge denotes a causal relationship.
Dashed edges denote correlation. Lyis = Z Dis(¢(q(xi)), #(q(x;)))
Q(xj,xj)=1,i#j

where Q : X x X — {0,1} is a match function. Q(x;,x;) =1
denotes same-class inputs from different domains.

Image credits: [Hu et al., 2022]
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Capturing temporal latent dependencies

Remember that ¢g(-) is a function maps X to Z. Given Z 1 D|X, by learning q(-), we
can extract a domain-invariant latent variable that represents the input space.

, 2022]

Since X is time series data, the learned Z should capture temporal latent information.

Image credits: [Hu et al
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Capturing temporal latent dependencies

Variational Recurrent Neural Networks (VRNN) [Chung et al., 2015] is used to model
the dependencies between latent random variables across time steps, and q(-).

The VRNN contains a Variational Autoencoder (VAE) [Kingma and Welling, 2013] at

every time step and these VAEs are conditioned on previous auto-encoders via the
hidden states of an RNN.

Domain wmzszzIIITTTTTTS
2O

, 2022]

Green lines: generation process; blue lines: inference process; red lines: recurrence process

Image credits: [Hu et al
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Overall algorithm

The complete objective function to minimize:
Leir + vLais + )\Ltemp

where Lg;s denotes the distance over X¢ between same-class inputs from different
domains. Liemp is the the objective function for the VRNN.
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Summary of representation learning

Advantages

® General and popular
® Better performance

® Some theoretical guarantee
Disadvantages

e Still difficult to remove spurious features

® Data-driven
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Gradient operation

Gradient operation approaches optimize machine learning models by adjusting their
parameters to minimize the loss function.

Initial
Weight

. l// Gradient

1
)
"
N

Cost

Minimum Cost

S
>

Weight

Image credits: Clairvoyant Blog
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Gradient interpolation loss to generalize along time

Paper: Training for the Future: A Simple Gradient Interpolation Loss to Generalize
Along Time [Nasery et al., 2021]

Introduce a Gradient Interpolation (Gl) approach for temporal domain generalization.

Train Deploy

The approach includes a time sensitive network and imposes a special loss to
encourage the network to generalize to the near future.
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Image credits: slideslive

Time sensitive network Fy(x, t)

Use Time2Vec (t2v) [Kazemi et al., 2019] to capture complex
dependencies such as periodicity.

[] w;t + b, 1§i§mp X

Te[i] =

‘ sin(wit + b)), mp<i<m .
t2v

Introduce a novel time dependent leaky ReLU (TReLU) NN Layer

whose threshold and slop are affected by time. " TReLU

Paramet tric ReLU
NN Layer

| TReLU —

—

ofz)
!
Ao m N ow s oW

=5 4 3 -2 1 0 1 2 3 4 5
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Gradient interpolation

Despite using a time-sensitive artitecture, ERM may overfit on Ds, ... Dy, since there
is no relation or constraint between the prediction of the network on different

timestamps.

Gl loss: OFp(x.t — 0)
L(y: Fo(x, £)) + A L(y: Fo(x, t — 6) + 6 -2
(v Rl )+ X_max | Ly P, £ = 8) + 6

Pred loss . .
Pred loss on interpolated logits

)

The second term is the loss on a regularized approximation of Fy(x, t) using the
first-order Taylor Expansion at t — §. It provides “supervision” on nearby time steps

and encourages smoother functions.
0 is adversarially chosen by gradient ascent within a user-provided window A.

A negative § encourages extrapolation from the future.
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Qualitative analysis on 2-moons

@® T-=10y=-1 @ T=-10,y=1 T 5 =1 T = F=
2 2 2
) g 8 1
0 o ©
g 2
2 E 2o
& & &
=1 -1
2 B
-2 =1 0 b ¥ -2 -1 0 1 =2 =1 o 1
feature x; feature z; feature @1
(a) Baseline: ERM (b) Incremental Fineutining (c) CDOT
2 2 2

2021]
H
feature x,

feature z;
feature z,
°

|
-

-2 -1 0 1 -2 -1 0 1 -2 -1 0 1
feature z, feature @, feature x;
(d) CIDA (e) GI (f) Gradient Regularization

Gl learns a more accurate decision boundary, which rotates correctly along time.

Image credits: [Nasery et al
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Datasets, benchmarks and evaluation




Benchmarks for OOD generalization

Two popular benchmarks for OOD generalization:

Dataset Domains

+90% Input(®  cameratrap photo tissueside  cellimage molecular graph wheat image

+80% -90%
Colored MNIST 3 3 . Prediction (j) animal species  tumor  perturbed gene  bioassays  wheat head bbo
Domain (d) camera hospital batch scaffold location, time

, 2021]

(degree of correlation between color and label)

# domains 323 5 51 120,084 47
0° 18" 30° 45°
# examples 203,029 455,954 125,510 437,929
Roted MNIST oy ;
Train example /| )Luj \'Y‘ :
Caltech101 LabelMe SUNO9 VOC2007 3 . j
VLCS
\’/ ’
PACS S
Beery etal. Bandi et al. Taylor et al. Hu et al. David et al.
Adaptedfrom 5500 2018 2019 2020 2021

(a) DomainBed [Gulrajani and

Lopez-Paz, 2020] (b) WILDS [Koh et al., 2021]

They focus on image datasets.

Image credits: [Gulrajani and Lopez-Paz, 2020, Koh et al
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A benchmark for OOD generalization in time series

WOODS | ] is a benchmark of 3 synthetic and 8 real-world
time series datasets spanning a wide array of critical problems and data modalities,
such as videos, brain recordings, etc.

S TCMNIST TCMNIST

ST R Time CAP SEDFx PCL LSA64 HHAR PedCount AusElec IEMOCAP

Classification Classification Cl jon Classification Ci

Classification B = m L [Ee—
X: 1D signal ~ X: digit video  X: digit video X: EEG signal X: EEG signal  X: EEG signal = X: videos X: accel/gyro  X: pedestrian = X: energy X: AV + text
Y: frequency  Y: sum parity ¥Y:sum parity Y: sleep stage Y: sleep stage Y: motorimg  ¥:sign word Y: activity crossing count consumption 'Y: emotion

Spurious Spurious Spurious

Domains| Data |Task
El

signers th\e watch Locauons Month / event Emotion shift
frequency digit color = digit color C 7oL 9) January ﬁ Sen[oew)
correlation correlation correlation A T02 9 w
Test:{(10%) Test:(l0%) = Test:(10%) M - £ || 44 ) (schalkos i) alO" Nexus47 T65 © Hohdays Rare shiff

Domain Generalization Subpop. Shift

Synthetic challenge Real-world datasets

Image credits: [

https://woods-benchmarks.github.io/auselec.html


https://woods-benchmarks.github.io/auselec.html

OOD generalization algorithms for time series

The framework includes adaptation of existing OOD generalization algorithms for time
series datasets.

® Empirical Risk Minimization (ERM)

® Invariant Risk Minimization (IRM)

® Group Distributionally Robust Optimization (GroupDRO)

e DIVERSIFY [Lu et al., 2022]

Some methods are agnostic to data and tasks, and some are only applicable for
classification tasks.
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Model selection

For DG in time series

® Train-domain validation: Choose the model that gets the
best average validation performance across training domains. training domains  test domain
D, D, D, D,
® Test-domain validation: Choose the model with the best | | | | |

performance on the test domain. No early stopping.

® Oracle train-domain validation: Choose the model with

the best performance on the test domain. During training, | | | I:I

. ) . [ train validation
Lopez-Paz, 2020]: Train each model while holding one of the [ test [ sslect modl bassd on st

the validation is done on training domains.

® Leave-one-domain-out cross-validation [Gulrajani and

training domains as validation set. Choose the model
maximizing this average accuracy, retrained on all training
domains.
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Experimental findings of WOODS

® \WWOODS datasets have a significant generalization gap
Dataset Performance

(Perf. is accuracy D 00D Gap

unless specified)

Spur.-Fourier 74.5(0.1) 9.8(0.2) 64.7
TCM.-Source  68.4(0.1)  102(0.1) | 58.2

AusElec (rmse) ~ 232.0(2.6) 397.2(8.4) | 165.2
IEMOCAP 69.1(0.4) 57.7(1.9) | 114

® Marginal improvement over ERM on WOODS real-world datasets on average

® Algorithms fail on synthetic datasets
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More datasets

Healthcare: elCU collaborative research database [Pollard et al., 2018] is a freely

available multi-center database for critical care research.

The elCU Collaborative Research Database

. 7 4

—

200k patients 3.8M diagnoses. 39M labs

m o |

200 ICUs 3M treatments 26M vitals

Retail: Favorita [Mendoza Calero, 2018] comprises grocery sales data from
Corporacién Favorita.

Environmental monitoring: Air-quality dataset [Zhang et al., 2017] contains hourly

Image credits: Blog of Toby Manders

air quality information collected from 12 stations in Beijing.
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Summary, future directions and discussion




Conclusion

Motivation, background, problems and challenges of OOD generalization in time series

Methodology:

® Data manipulation: Data augmentation
® Representation learning

m Regularization, adversarial learning, graph models, causality-inspired method

® | earning strategy: Gradient operation

Datasets, benchmarks and evaluation
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Future directions

Interpretable OOD generalization in time series
® | earning to interpret: why it can generalize?

Ethical and fair Al

® Ensure models are fair and unbiased, especially in critical applications like
healthcare.

® Develop fairer evaluation standards.
Sustainability and scalability

e Computational efficiency in model training and execution for large-scale time
series data.
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Thank You!

Questions, comments, . ..
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